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INTRODUCTION

Lexical ambiguity is common to all human languadedeed it is a fundamental
defining characteristic of a human language: aively small and finite set of words
is used to denote a potentially infinite space emng. And so we find that many
words are open to different semantic interpretatidepending on the context. These
interpretations can be callebrd sensesFrom very frequent words suchcal (28
verb senses in the Princeton WordNet 2.0), to rmediequency words such bBank
(10 noun senses), to infrequent words suctras (4 verb senses), to very rare words
such agjuoin (3 noun senses), lexical ambiguity is pervasiwtiarscapable. Table 1
lists some of the WordNet senses of these words.

<Table 1 near here>

Lexical disambiguation in its broadest definiti@miothing less than determining
the meaning of a word in context. Thus, it is thuig be “Al-complete” — it is as
difficult as any of the hard problems in artificiatelligence including machine
translation and common-sense reasoning. Of coilisajot an end in itself, but is an
enabler for other tasks and applications such esnga semantic analysis of text,

machine translation, information retrieval, lexicaghy, and knowledge acquisition.



In fact, it was first formulated as a distinct cangtional task during the early days of
machine translation in the late 1940s, making & ohthe oldest problems in natural
language processing.

Lexical disambiguation is at the intersection ofesal fields including linguistics,
cognitive science, lexical semantics, lexicogramngd, of course, computational
linguistics. But it is the latter two fields thaave had the most influence on the
research, the majority of which has focused on morsstrained versions of the
problem.

In the field of computational linguistics, the pleim is generally calledord
sense disambiguation (WSD)To determine which sense of a word is activated by
the use of the word in a particular context. Famegle, the context (in its broadest
sense including both the sentence and text ite€lfamy other knowledge the reader
might have of such situations), can disambigeatkin “She wascalledinto the
director’s office.” Thus WSD is essentially a tagkclassification; word senses are
the classes. This is a traditional and common cierization of WSD that sees it as
anexplicit process of disambiguation with respect to a fixe@ntory of word senses.
Words are assumed to have a finite and discretef seinses—a gross reduction in
the complexity of word meaning.

This characterization has led to a dream that aarate generic component for
WSD will one day be developed. But we may nevertBisedream come true, since
WSD is highly application-dependent and domain-delpat. For one, a task-
independent sense inventory is not a coherent poineach task requires its own
division of word meaning into senses relevant ttdsk. For example, the ambiguity

of mouse(animal or device) is not relevant in English-Frlemachine translation, but



is relevant in information retrieval. The oppos#erue ofriver, which requires a
choice in Frenclffleuve‘flows into the sea’por riviere ‘flows into a river’). Moreover,
in any given domain of language use, many wordsiar@ambiguous.

Second, completely different algorithms might bguieed by different tasks. In
machine translation, the problem takes the fortaxgfet word selection Here the
‘senses’ are words in the target language, whitdnaforrespond to significant
meaning distinctions in the source languadzgnkcouldtranslate to Frenchanque
‘financial bank’ orrive ‘edge of river’). In information retrieval, a senseentory is
not necessarily required, because it is enougimeavkhat a word is used in the same
sense in the query and a retrieved document; vemestesthat is, is unimportant.

Third, explicit WSD has not yet been convincinggntbnstrated to have a positive
effect on any significant application. In many apaiions lexical disambiguation
occurs implicitly by virtue of other operations sugs domain identification or a
phenomenon called mutual disambiguation.

Nonetheless, as a scientific endeavor, explicit WSery attractive: it is easy to
define, experiment with, and evaluate, and asw@trissleading us to a better
understanding of word meaning and context.

Research has progressed steadily to the point vexgtesit WSD systems achieve
consistent levels of accuracy on a variety of wgpes and ambiguities. The best
performing systems use a supervised corpus-bagedagh, in which a classifier is
trained for each distinct word over a corpus of oaly-annotated examples of each
word in context. Bayesian learning and supportaetachines have been the most
successful algorithms to date, probably becausedhe cope with the very high-

dimensionality of the feature space. Virtually degture derivable from the



surrounding context of a word has been used. Ee i8 particularly rich in the
variety of techniques employed, from dictionarydzhsnethods that use the
knowledge encoded in lexical resources, to comiyletesupervised methods that
cluster occurrences of words, thereby inducing veenses.

Current accuracy on the task is difficult to state without a hoktaveats. On
English, accuracy at the homograph level is ralyiabove 90%, with some methods
on particular homographs achieving 96.5%. On fgrained sense distinctions, 73%
accuracy was reported at Senseval-3, an open ¢walexercise held in 2004. The
baseline accuracy, the performance on the simptestible algorithm of always
choosing the most frequent sense, was 55%. An upperd on accuracy, a measure
of the difficulty of the task based on human perfance, was 67% (but this figure is
low because it was computed on a superset of thdsaesed in the exercise).
Unsupervised systems do not perform as well. As8eal-3, the best unsupervised
systems achieved about 58% accuracy (below theimasd 61%). Performance is
highly affected by many factors including the gramity of the sense distinctions, the
quality of the sense inventory, and the words chdseevaluation.

The rest of this article discusses the above issugeater detail. Note that
although lexical ambiguity is pervasive in all humanguages, to a large extent the
methods of disambiguation are independent of laggughus, most of the examples
in this article are drawn from the research don&wglish, the language most

employed in research.

MAKING SENSE OF WORDS

Humpty Dumpty said ...: “There’s glory for you.”



“I don’t know what you mean by glory,” Alice said.

Humpty Dumpty smiled contemptuously. “Of course donit—till | tell you.
I meant, There’s a nice knock-down argument foryou

“But ‘glory’ doesn’t mean a ‘nice knock-down argumg’ Alice objected.
“When | use a word,” Humpty Dumpty said in rathes@ornful tone, “it
means just what | choose it to mean—neither mordess.”

(Lewis Carroll, Through the Looking Glass.)

Polysemy

Lexical semanticssie articlgis the theoretical study of word meaning, onesasp
of which is lexical ambiguity, gpolysemy. Word meaning is in principle infinitely
variable and context sensitive. It is does notd#vip easily into distinct or discrete
sub-meanings. Lexicographers frequently discoveoinpus data loose and
overlapping word meanings, and standard or conweatimeanings extended,
modulated, and exploited in a bewildering varieftyvays. The result is that most
sense distinctions are not as clear as the distmbetweerbankas a money lender
and bank as a river side. For example, the folmaekhas several closely related
meanings including:

the company or institution,

the building itself,

the counter where money is exchanged,

a money boxgiggy banl,

the funds in a gambling house,

the dealer in a gambling house,



a supply of something held in reserve, and

a place where the supply is heldood bankk

Ambiguity of this sort is pervasive in languages soften difficult resolve, even
for people. A given use of a word will not alwayearly fall into one of the available
meanings in any particular list of meanings. Ndwaldss, lexicographers do manage
to group a word’s uses into “distinct” senses, alhgractical experience on WSD
confirms the need for representations of word sense

Lexical semantics defines a spectrum or hierardldistinctions in word meaning
in terms ofgranularity :

Part-of-speech
Homograph
Polysemy
Regular Polysemy
Word Uses
Fixed expressions

At a coarse grain, many words do have clearlymistishable senses. A word has
part-of-speech ambiguityif it can occur in more than one part-of-speech. Fo
examplesharpis an adjective (“having a thin edge”), a nounrffasical notation”), a
verb (“to raise in pitch”), and an adverb (“exatllyPart-of-speech ambiguity does
not necessarily indicate distinct meanings (elg relation between a verb and its
nominalization), but it can be resolved by parspéech taggingge articlg a
simpler and more accurate class of algorithms thaiWSD algorithms given below.
In the majority of WSD systems, part-of-speech tagds used as an initial step,

leaving the WSD algorithm to focus on within-paftspeech ambiguity.



A homographis a word that has two or more distinct meanibgs the definition
is some arbitrary. Etymologygé§e articlis a major source of homographs: for
example, théow of a ship derives from the Low Germlaoog whereas theéowfor
firing arrows derives from the Old Englifloga (Incidentally,bowis a good example
of the potential for WSD in a text-to-speech apien to point to the right
pronunciation. Resolving homographic ambiguity imoefly achieves above 90%
accuracy, and is generally considered a solvedgmb

Hence polysemyis the real challenge. Most common words havenapbex
structure of interrelated senses below the homdgieagel, as exemplified byank
above. Even rare and seemingly innocuous words @igin see table 1) have
polysemous senses. Individual senses are ofteieddby a process of extension or
modification of meaning—it could be historical, fitional, semantic, or metaphorical.
For example, thenouthof a bottle, a cave, and a river are defined @lagy to the
mouthof a person. Sometimes the relation is so closeake disambiguation almost
impossible, without background knowledge on whydfstinction was drawn.
Consider two WordNet 2.0 sensesational 1) in the interests of the nation, and 2)
concerned with an entire nation or country.

When the relation is systematic across a classoodsvit is calledegular
polysemy, and includes ambiguities such as physical-olgentént book), and
institution/building bank. Regular polysemy is not usually explicitly treatn
dictionaries or in WSD, and indeed, in some cas#és ¥enses can be active at once
(bookin I’'m going to buy John a book for his birthday

Many other phenomena make word meaning difficufotonalize including

slightly differing word “use” in context (e.goall as a tennis ball or football has



different associations in text), fixed expressi{piggy bank, metonymy and
metaphor ¢rownin the lands of the crowWnvagueness in contexidtionalandbook.

Words can have as many meanings and subtle vaisadi® people give to them. So,
is the very notion of word-sense suspect? Someedtwi task-independent senses
simply cannot be enumerated in a list, becausedh®pn emergent (psychological)
phenomenon, generated during production or compeabie with respect to a given
task. Others go further to argue that the onlylténposition is that a word must have
a different meaning in every distinct context inigvhit occurs—words have infinite
senses.

Notwithstanding the theoretical concerns to thedalgor psychological reality of
word senses, the field of WSD has successfullybésteed itself by largely ignoring
lexical semantics. As with modern lexicograpbgd articlgwhich is based on the
intuition that word uses do group into coherentaetinc units, the field has been
defined by a practical problem, which happens tovek-suited to empirical and
computational techniques. The inherent difficultyexical disambiguation proper is
of course acknowledged—our understanding of lexdeatantics is just far from

adequate.

Context and disambiguation

If polysemy is an intrinsic quality of words, thambiguity is an attribute of text.
Whenever there is uncertainty as to the meaningatispeaker or writer intends, there
is ambiguity. So, polysemy indicates oplgtential ambiguity, and context works to

remove ambiguity.



Principles of effective communication would havee@void vagueness and
ambiguity. This would mean eliminating all potehtexical ambiguity by creating a
context that forces only one possible interpretatibevery word. Difficult to achieve,
many a verbal dispute hinges on the confused nhellti@anings of key terms. But
sometimes ambiguity is desired and explicitly fasleid. Puns, for instance, require
not only that two (or more) meanings be active siameously, but that the reader
recognizes the ambiguityime flies like an arrow. Fruit flies like a banana

Intentional ambiguity is not just for humor. Evengois familiar with the politician
who uses ambiguous or vague terminology in theisef diplomacy, equivocation,
or the evasion of difficult questions. And sometinp@tential ambiguity just doesn’t
matter and is not worth the effort to resolve, luseseither reading is acceptable (e.g.,
bookor national above).

Now, in normal well-written text or flowing convextson, potential ambiguity
generally goes unnoticed by people. The effeab istiong that some people can’t
find the pun that's in front of their nose. Evidersuggests that people use as little as
one word of context in lexical disambiguation. Timdicates that context works very
efficiently ‘behind-the-scenes’ in disambiguationgeople.

But to a WSD system every polysemous word is anthigult must resolve the
ambiguity by using encoded knowledge of word megiaind the evidence it can
derive from the context of a word’s use. Thus, wokehning and context are core

issues in WSD.



Measures of difficulty

This section introduces several measures of thieultfy of WSD, which can be
computed from the distribution of word senses kt:te

» Average polysemy,

* The most frequent sense of a word, and

» The entropy of a sense distribution.

A fourth measure, inter-annotator agreement, isudised in the section on Evaluation.

How much potential ambiguity is there in text? Eiconsider dictionaries. In
practical terms, there is a limit to the amounpoliysemy that a vocabulary can bear;
that is, only a finite number of concepts are lakied and granted the status of ‘word
sense’Longman’s Dictionary of Contemporary Engli@fDOCE), for example, lists
76,060 word senses spread over 35,958 unique weagal units,” to be precise).
Of these unique lexical units, 38% (14,147) arggainous, so thaverage
polysemyof LDOCE is 3.83 senses per polysemous word. Edetyonary has a
different division of meaning. WordNet 2.0 has arrage polysemy of 2.96 senses
per lexical unit (125,784 unique lexical units, 28 ambiguous covering 77,739
senses).

Now consider text. Table 1 provides a clue thattloee frequent a word is in
actual text, the more senses it is likely to hawes skewed distribution was first
observed by George Zipf, who attributed it to himé&lple of Least Effort. Zipf
argued that to minimize effort a speaker would ligdzave there be a single word
with all meanings, whereas the hearer would prefeh word to have a single

different meaning. These competing pressures Ipfitdithe “law of meaning”, a
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power-law relationship between the number of seasaswvord,s, and its rankt, in
a list sorted by word frequency:
sOr*

He empirically estimated an expon&r0.466 using the Thorndike-Century
dictionary. Zipf thereby explained tloeigin of word senses(Note that this law is
different from “Zipf's Law” about the distributioaf word frequencies;see article on
Zipf Law]).

<Figure 1 near here>

Figure 1 graphs the skew of words in Bréish National CorpugBNC) with
respect to WordNet 2.0 senses. BNC words (root$afmouns, verbs, and
adjectives) in rank order by frequency in the BN€ @lotted against the number of
WordNet 2.0 senses per word. Each point actualigesponds to the mean number of
senses in a bin of 100 words in rank order. Theidigion is a power-law with the
exponenk=0.404, very close to Zipf's estimate. Clearlyeaivery frequent words
are very polysemous, and most words, on the t@aielonly 1 or 2 senses. Thus, the
average polysemy of a text, considering word oenaes, will be higher than a
dictionary would suggest. The BNC has an averafgespmy of 8.04 WordNet 2.0
senses per polysemous word (84% of word occurreareegotentially ambiguous),
and 10.02 LDOCE senses. The above figures are stpadan table 2.

<Table 2 near here>

An observation is that data sparseness is unaveiflabmost ambiguous words in
the corpus, which implies there will be a problendiscovering the contextual clues

for disambiguation.
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Average polysemy is unsatisfactory as a measudéfafulty since it might
actually be an overestimate—the division of meammght not match the domain of
discourse or the task. A heuristic callate sense per discoursgtates that words are
not ambiguous within a single discourse: a givendmaill be used in the same sense
throughout a given document, or more strongly tghmut texts in the same domain.
For example, in weather repontgnd will always have the obvious sense, and none
of its other senses (8 noun senses in WordNet &w@rage polysemy would drop to
1.0, putting WSD out of a job. However, even dorrgpecific texts can contain
potentially ambiguous words. For exampilee in text about electronics can mean at
least a wire in a circuit, a product line, a prasucline, and a “bottom line”. One
study reports that 33% of words in Semcor (seevbefimve multiple senses per
document. So, a system has to decide for what wanrdsilomains the one-sense-per-
discourse heuristic applies. Moreover, many apptioa are open-domain, such as
wide-coverage machine translation and web/newgkeargines, and would benefit
from a domain-independent WSD component.

A more accurate way to calculate average polyseny use a sense-tagged corpus
to count the senses that are actually attestdteiocdrpusSemcoris a 234,000-word
corpus manually tagged with WordNet 1.6 sensdwadtbeen extremely valuable in
WSD research. The average polysemy of Semcor iseh8es per word—not all
senses are used in the corpus.

Not only is the distribution of words with respéathumber of senses skewed, but
also the distribution of senses of a word. Figure\2als that in Semcor, theost
frequent senseof a word accounts for the majority of the wordturrences. The

distributions (power-laws again) of 12 word clasiseSemcor ranging from 1-sense
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words to 12-sense words are shown in 12 columnsseSeare ordered bottom-to-top
by the proportion of occurrences of the word thaytaccount for, normalized per
word, and averaged over all words in the classaBparseness is also a problem for
the rarer senses of a word. Choosing the mostérgggense provides a high baseline
to measure performance against: in Semcor it aeki89% accuracy against 18% for
random choices.

<Figure 2 near here>

Difficulty can also be assessed with respect tmdividual word, in terms of its
number of senses, the proportion of its most fratjgense, and sense entropgnse
entropy is a measure of the skew in a word’s sense digioib. High entropy

represents a less skewed, and therefore moreuttifficoblem Eee article on entrofy

Studies show that the accuracy of WSD algorithrapgsvised learning methods, in
particular, were analysed) is roughly correlatethuwask difficulty according to any
of the above measures. For example, when the pgropaf the most frequent sense

exceeds 80%, algorithms do not do any better thamiost frequent baseline.

APPLICATIONS AND THE SENSE INVENTORY

A long-standing debate is whether WSD should baghoof as a generic
component, a kind of black box, that can be droppedany application, much like a
part-of-speech tagger, or as a task-specific compiotiesigned for a particular
application in a specific domain and integratedplieeto a complete system. On the
one side, research into explicit WSD has progresssatily and successfully to a
point where some people question if the upper liméccuracy has already been

attained. On the other side, explicit WSD has mtheen convincingly demonstrated
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to have a positive effect on any significant apimn. Only the integrated approach,
with disambiguation often occurring implicitly byrtue of other operations, has been
successful. The one side is clearly easier to de@rperiment with, and evaluate; the
other has applications and threatens the neejdicg WSD altogether. The

majority of researchers who focus on WSD take tinmér side.

The debate can be explained in terms of the sensatory. Every application of
word sense disambiguation requiresease inventory an exhaustive listing of all the
senses of every word that an application must beermed with. The nature of the
sense inventory depends on the application, anddhee of the disambiguation task
depends on the inventory. The three Cs of sengniaxies are: clarity, consistency,
and complete coverage of the range of meaninghdigins that matteSense
granularity is a key consideration: too coarse and some &rsienses may be missed,
too fine and unnecessary disambiguation errorsaoayr. For example (repeated
from the introduction), the ambiguity afouseanimal or device) is not relevant in
English-French machine translation, but is relewamiformation retrieval. The
opposite is true afiver (fleuve'flows into the sea’or riviere ‘flows into a river’).

Thus, the source of the sense inventory is the ohadision facing all researchers
and application developers. Below are describedatemain sources of sense

inventories, and three main application areas.

Four sources of sense inventories

Dictionary-based inventorieshave their source in machine-readable dictionaries
(MRDs). Because of their early availability, beftsege textual corpora, some of the

seminal work in WSD relied on MRDs, and many curraethods extract knowledge
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from MRDs. LDOCE has seen the most use in WSIprdvides hierarchical sense
distinctions from the homograph level down to afgranularity, and entries include
extra information useful in WSD such as subjectesoand example sentences.
LDOCE is a commercial product, but another dictign®lECTOR, was developed
primarily as a research tool by Digital Equipmewtrdration and the Oxford
University Press, one of whose goals was to supp&@D research. HECTOR was
used in Senseval-1 (see Evaluation section) anid t@ve developed into a very
well-used resource: it is linked to a sense-anedtabrpus, from which the senses
were derived. However, it is incomplete, coveribguat 1,400 lexical entries.

Dictionary-based inventories have several disadged. Dictionaries, whose
market is people (not NLP researchers or applinat@velopers), are subject to
standard market pressures, which dictate the $iteedlictionary, the coverage and
depth, and crucially the granularity and interpietaof sense distinctions. As a result,
the senses may not match those that are requirdeelgpplication. Dictionaries also
assume the vast knowledge of a human reader, aedw® out ‘common sense’
information that would we very useful in WSD.

A lexical database(or lexical knowledge base) is a step beyond théOMFhe
main example, WordNet, has become the de factalatdnn WSD research (for
English; WordNets in other languages have also bheed in WSD). WordNet shares
many of the advantages and disadvantages of MRfasulse although is was
designed for research, it was not specifically giestl for WSD. It has the significant
advantage that senses, or “synsets,” form a secnaeitivork (primarily a hierarchy),
which has been very useful in WSD, for examplesampute the relatedness between

word senses. Its disadvantages are that it foarsesncept similarity rather than
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what makes two senses different, and that it ifiteegrained for applications and
even for human annotators to reach high agreermbatlatter disadvantage can be
overcome by grouping closely-related senses, depgma the task and corpus. A
thesaurus, especialBoget’s International Thesaurwgth its extensive index, can
also be used as a sense inventory: each entrwofgunder a different category
usually indicates a different sense.

A multilingual dictionary can also form a sense inventory. The translatiémas o
word into another language can serve as word sahsts, since the different
meanings often translate into different words. hisnomenon is most consistent for
homographs (e.gchangeinto Frenchchangemeng‘transformation”) ormonnaie
(“coins”), but even very fine-grained distinctioase sometimes lexicalized
differently, especially in distantly-related langegpairs (e.g., Chinese lexicalizes the
building/institution polysemy ofhurch #{% ‘building, e.g., temple’, andi( &
‘institution’). One advantage of translations iprovide a practical level of sense
granularity for many applications, especially maehiranslation. But the major
advantage is the possibility to easily acquiredamgiounts of training data from
parallel texts. The disadvantage is that, outsfdeaxhine translation in the given
language-pair, the word senses do not always caewto other language-pairs or
applications (e.ginterestin three of it major senses (“sense of concenggal
share”, “financial accrual”), corresponds to onedvim Frenchjntérét).One also
loses the extra information contained in MRDs andcal databases.

Automatically induced sense inventoriegsire a response to the disadvantages of
dictionaries and other hand-built resources. Byvideg a sense inventory directly

from a corpus, the right level of sense granularéty be achieved and no external
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resources are required. An bilingual sense invgrdan also be induced from a
parallel corpus (i.e., a corpus in two languaggword-aligning the corpus. The
advantage of the approach is also its disadvantagetventory that directly
characterizes the sense distributions of a corpneat be easily used with a different
corpus. Also, it can be difficult to get a corpbattis large enough with evidence for
each important sense (at least 50 instances pse)sére induced senses may not
have human-readable labels, making it difficulirtap the induced inventory to

another (such as WordNet), which makes system cosgoaproblematic.

Applications

Machine translation

Early researchers imachine translation (MT) [see articlgfelt that the inability
to automatically resolve sense ambiguity was af&etor in the intractability of
general MT. However, explicit WSD has yet to beleoven to be useful in real MT
applications. Instead, implicit disambiguationtaget word selection, has been
used in MT.

Domain plays a strong role in disambiguation (rette one-sense-per-discourse
heuristic above). Most real MT systems rely on seed dictionaries for each
domain that leave most words unambiguous. Any reimgiserious ambiguity can
often be handled using hand-crafted rules. In &agn general domain MT systems,
such as Systran, reportedly use extensive setsml-brafted rules to get major sense
distinctions right. So, it's not that WSD is indffeve, it's just subsumed by a

different semantic process: developing lexical veses (see below).

17



Statistical MT systems resolve ambiguity in a défg manner. Roughly, statistics
model how a source word or sequence of words @tessinto the target language.
The model induces a sense inventory with transigirebabilities for target word
selection. A good model of target language sequeeiscalso required. For example,
one early statistical MT system makes the followimgprrect translation (from
French to English):

Je vais prendre ma proper decision.

| will take my own decision.

because it chooses the most common translatipreoidre(take) the model does
not realize thatake my own decisias improbableébecause it knows only about
three-word sequences (trigrams). In this casexplicé WSD component improved
the accuracy of the overall system by 13%. Butltheswas never pursued, since it
was thought better to improve the translation madelf, by using a more structured
representation of the context. Then, lexical disgomtion would occur implicitly,

but would rely on the same type of contextual infation as explicit WSD uses.

Lexicography and information extraction

A broad range of applications in knowledge acqgaisitan make use of WSD. In
particular,lexicography [see articlpand WSD have a mutual relationship in that
lexicographers build the sense inventories that Vd8Bmbiguates to. In productive
use, WSD and lexicography can work in a loop, Wit8D providing rough sense
groupings to lexicographers, who provide bettessanventories and sense-
annotated corpora to WSD. The HECTOR project (bege&) was the first attempt to

do this, but it was never fully realized. Lateroef§ have occurred within the Senseval
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framework—senses that are difficult for human aatws or for systems are fed back
to lexicographers for improvement.

Lexical resources and knowledge-bases are congrtaigrow in many languages.
WSD is playing a key role to map between resout@eseate consistent multilingual
resources (for example to map between WordNetgferent languages).

WSD has been used to disambiguate the definitinde&ample sentences in
dictionaries, to better ‘link up’ the dictionaryn& user applications might include an
intelligent dictionary that can find the right word sense given the cdrdéa word,
making dictionaries easier to use for second-lagguearners.

In other knowledge acquisition efforts, suchrdermation extraction and
filtering [see articlpused in the intelligence community, word meansgrucial.
Information extraction has to build a databaseay,world events, by linking textual
references to the right concepts in the databaeatotogy. An information filtering
system might be set up to flag references to,iBagal drugs; false hits involving
medical drugs would have to be avoided. Often sysitems rely on hand-crafted
disambiguators for the word and senses in quedtiamed-entity classification and

co-reference determinatioede articlpis basically WSD for proper names.

Information retrieval

Information retrieval (IR) [see articlghas seen the most work to prove explicit
WSD in an application. Our intuition is that WSDosifd help to improve IRystems
by removing those hits to a query in the wrong sexisa word in the query. Consider
querying for banks to invest with, and receivingulés about the Amazon river.

However, the general consensus in the IR commusnityat explicit WSD makes
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only marginal improvements in precision, and in sarases degrades performance.
The reasons are the same as for MT: either thgdie® is domain-specific, which
significantly reduces the problem, or mutual disayuation occursMutual
disambiguationis the phenomenon that the natural co-occurrehe®uls in queries
and documents tend to disambiguate one anotheexXeonple, the query “bank to
invest with” would retrieve a document containlmgnkandinvest(since IR systems
generally index and retrieve on words)whichbankmost likely happens to be used
in the financial sensdénkin its river sense would not tend to co-occur wiritves).
Mutual disambiguation is another form of implicisdmbiguation, directly encoding
the same type of contextual information as expii¢8D uses.

In IR, explicit WSD is applied by indexing word s&s rather than words, and
then performing WSD on any input query. It has begggested that 90% accuracy is
necessary to improve performance, and that a 20086 rate is equivalent to no
disambiguation at all. Anything less will degradgfprmance. Current WSD does not
approach this level of accuracy except for homdgsaput then, it is often said that
only homograph level distinctions are relevantRn since matches of different
polysemous senses could well be desirable to the Bsit consider the wordhll,
which has a fine-grained “ambiguity” with respeztdifferent sports, which could be
relevant to a user’s information need. This im@it®gat choosing the right sense
inventory is dependent not only on the collectiout, also on information needs of the
users.

WSD would be potentially effective in two casessEiit would improve
performance on short 2-4 word queries (common ob ¥éarch engines), where

mutual disambiguation does not work consistentlyfdctunately, short queries are
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also difficult for WSD techniques for the same mesof lack of context. Second,
when query expansion is used (i.e., to add synoramdsother related words to
queries), WSD can ensure that only synonyms imig/ne sense are adde@ross-
lingual IR does benefit from explicit WSD to translate angdand the query properly,
avoiding the noise added by incorrect translations.

In several experiments to automatically inducerssenventory from a IR
collection, a 7-14% improvement in IR precision waserved. The induced
inventory can pick out the fine-grained ambiguifigsch adall) when they are
present. Disambiguation errors, because of the aignbetween external sense
inventory and collection, are reduced.

Finally, WSD has been applied in several IR-basetieser applications including
newsrecommendersandautomatic advertisement placementFor example, the
wordticketin a query could trigger ads about airline tickésffic tickets, or theatre

tickets, depending on its sense in the query.

HISTORICAL CONTEXT

This section acknowledges a few of the visionafi@sts”, and influential works
about WSD. It cannot come close to acknowledgihgaaitributors.

Word sense disambiguation as a distinct computaltioroblem has its roots in the
first research on machine translation and earlgaehers well understood the
significance and difficulty of WSD. Warren Weavdirector of the Natural Sciences
Division of the Rockefeller Foundation, circulatethow-famous memorandum in
1949 which already formulated the general methodolglye applied in all future

work:
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If one examines the words in a book, one at a thmeugh an opaque mask with a
hole in it one word wide, then it is obviously ingsible to determine, one at a
time, the meaning of words. “Fast” may mean “rapa’it may mean
“motionless”; and there is no way of telling which.
But, if one lengthens the slit in the opague masit] one can see not only the
central word in question but also say N words dmegiside, then, if N is large
enough one can unambiguously decide the meaning ...
Weaver also recognized the basic statistical cherat the problem and proposed
that statistical semantic studies be undertakenfast step.

Abraham Kaplan, in 1950, called ambiguity the “coomeold of the pathology of
language.” His study determined that two wordsasftext on either side of the
ambiguous word was equivalent to a whole sentehcerdext in resolving ambiguity.
The 1950sthen saw much work in estimating the degree ofiguity in texts and
bilingual dictionaries, and applying simple statist models (e.g., choosing the most
frequent sense, or applying a Bayesian formulaeterdhine the probability of a sense
given the domain.

In 1959, George Zipf published the “law of meanimghis bookHuman
Behaviour and the Principle of Least Eff¢see above).

By the mid1960s MT was in decline because the perceived intrddiabf
general MT reached a zenith. Yehoshua Bar-HilielL960, argued that even the
relatively simple case of the ambiguitypenin this now famous example:

Little John was looking for his toy box. Finally Feund it. The box was in the

pen John was very happy.
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could not be resolved by “electronic computer,”dee of the need to model, in
general, all world knowledge. Arguments such as Il to the 1966 ALPAC report

[see article on MJTwhich in turn caused the end of most MT reseaacid, WSD

research along with it.

In the1970s WSD revived within artificial intelligence (Alyesearch on full
natural language understanding. Margaret MasteaadrRoss Quillian had in the
early 1960s pioneered the use of semantic netwofksords and senses) and
spreading activation to solve WSD. Yorick Wilks théeveloped “preference
semantics”, one of the first systems to explicittcount for WSD. The system uses
selectional restrictions and a frame-based lexseaiantics to find a consistent set of
word senses for the words in a sentence. The ideadigidual “word experts”
evolved over this time (Steven Small and Charleg&i). Word experts encode for
each word the constraints and procedural rulesssacg to disambiguate it, and
would interact with each other to disambiguatenalids in a sentence. In the end,
such work faced an impractical knowledge acquisibottleneck because of the
hand-coding required, but the idea of word expeatsied on within the statistical
paradigm.

A turning point for WSD occurred in tH®©80s when large-scale lexical resources
and corpora became available. Hand-coding coulgplaced with knowledge
extracted from the resources. Michael Lesk’s shottseminal work used the overlap
of word sense definitions in ti@xford Advanced Learner’s Dictionary of Current
Englishto resolve word senses. The technique is commus®y as a baseline today.
Other researchers used LDOCE subject codes (€€gioiEEconomics), which label

domain-specific senses of words, &wapet’s International Thesaurus
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The1990ssaw two main developments: the statistical revafuin NLP swept
through and Senseval began. Consequently theranvasponential increase in the
research output on WSD, and it becomes difficullibgle out any one researcher.
Weaver had recognized the statistical nature optbblem. Early corpus-based work
by Stephen Weiss in 1973 on WSD for IR, and Edviagliey and Philip Stone in
1975 on content analysis demonstrated the poteasitehpirical evidence and
machine learning approaches, presaging the stafisévolution. Peter Brown and his
IBM colleagues demonstrated the first use of cotpased WSD in statistical MT. By
the mid 1990s a wide variety of supervised and p@asused machine learning
techniques had been applied to WSD (David Yarovesig his colleagues were
influential), but it remained difficult to compadéferent results because of disparities
in words, sense inventories, and corpora choseevaiuation.

Senseval, a forum for the common evaluation of VWAB&5 first discussed in 1997
(Adam Kilgarriff and Martha Palmer). Senseval hesvigled a consensus on the
appropriate tasks and framework for evaluatioreglopen competition-based
evaluation exercises, and substantial resourcgs ¢ense-annotated corpora) for
WSD in many languages.

Statistical corpus-based techniques have now bdensvely researched and
supervised learning algorithms consistently achteeebest performance on explicit

WSD, given sufficient training data.

METHODS FOR WSD

This section covers many of the methods for expktandalone, word sense

disambiguation. Implicit disambiguation usuallyieslon similar contextual evidence
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and knowledge sources, but the algorithm is entvimigh the other processes of an
application. The methods are described at a higdl l&f abstraction. Accuracy is
given in some cases, but direct comparisons afieuifsince the conditions of each

experiment were different (see Evaluation section).

Computational formulation of the problem

Explicit word sense disambiguation is a natetatsification problem: given a
word and its possible senses, classify each instahthe word in context into one or
more of its sense classes. The features of thexioptovide theevidencefor
classification. WSD is characterized by a havinggy high-dimensional feature
space That is, the surrounding context of a word haasyrfaatures that can bear on

the classification of the word, including featuoéshe surrounding words:

Word strings (or root words, or morphological segtal

Part-of-speech tags (e.g., “Noun”, “Transitive V§rb

Subject/domain codes (e.g., “EC” for EconomicdiDOCE),

Sense classes (of disambiguated or partially diggimabed words),

Semantic classes and selectional restrictions, (€grson”, “Drinkable”),

features of the relational structure taken pahyirthe instance of the word:

Syntactic relations (e.g., modification by an atljex),

- Collocational patterns (i.e., recurrent fixed patsesuch asiver bank,

- General co-occurrence relations (eirgvestanywhere in the local context of
bank),

- Semantic relations (e.g., similarity or hypernymy),

and features of the text as a whole:
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- Topical features (e.g., words and concepts commiooigd in wider contexts),

- Subject/domain codes or other classification e, t

- Genre (e.g., financial news)

Specific word order or syntactic structure is ofteacial (e.g., the worgesticideto
the immediate left gplantindicates a factory, but in other positions florE)e
features nearest to the target word typically ptexthe most predictive power.

A separate classifier, or word expert, is conseddor each word based on various
knowledge sourcesHand-construction is one possibility, as in tadyeAl
paradigm; automatic acquisition is more commormegifrom the knowledge in
lexical databases (including definitions, examgetences, semantic relations, and
subject codes), or from corpora (sense-annotatedtyror both.

Some systems perform probabilistic classificatinrwhich a word instance is
assigned to multiple sense classes with a probaliktribution, when they lack
sufficient evidence for any one sense. This caeffeetive when combining multiple
different sense disambiguators, or in applicatsunsh as information retrieval where
the later processing is probabilistic itself.

Two less common formulations of WSD are as a fdted an inducer. Alter
removes unlikely senses. For example, a singleeméevidence, say a selectional
restriction, might immediately rule out a senseselise inducediscovers sense
classes by clustering the contexts of a word’saimsts.

Finally, a note about computational processing ireguy all methods. Generally,
the input text (and training corpus) is preprocdssestandard NLP components
including part-of-speech tagging, stemming, morpgual analysis and segmentation,

and sometimes parsing. Feature vectors are tharedran the required formalism.
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Beyond the basic lexical resources used, the t@iodrpus is sometimes processed to
build lexical networks and neigborhoods, and bilialgivord-alignments. The
computational complexity of WSD has not yet begaeral concern except where it

makes running hundreds or thousands of experimafieissible.

Dictionary-based methods

In many respects, dictionary-based methods aredbiest to comprehend because
it is obvious why the work when they work. Thesk Method, as it has come to be
known, was the first to use dictionary definitiotte obvious source of knowledge
about word meanings. It is based on the hypottieatsvords used together in text
are related to each other and that the relatiorbeasbserved in the definitions of the
words and their senses (cf. mutual disambiguatibim)s, the method disambiguates a
word by comparing its definition to those of thersunding words. In the case of two
words, it considers all combinations of the semdeéke two words, computing the
overlap of every pair of definitions. The pair witke largest overlap is selected. For
example, ipine conethe senses “seven kinds of evergreen treenelle-shaped
leaves” ofpineand “fruit of certain evergreen trees”ainehave the largest overlap
(2 words) of all combinations. One implementatichiaved 50-70% accuracy on a
small test set. This basic method suffers from dptaseness and is sensitive to the
exact wording of definitions. Simple extensiondude additional elements in the
overlap calculation: example sentences, definitmnsords in the sense definitions,
definitions of related word senses (e.g., by hypemnin WordNet), and sentences

from a sense-annotated corpus (69.1% accuracgilatter case).
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The Lesk Method is often inefficient for more trefew words since there are too
many combinations of word senses to consider. @raimate solution uses
simulated annealing.) But because of its simplittity often used as a baseline to
assess the performance of other systems.

The Lesk Method can lEeneralizedto use general word-sense relatedness rather
than definition overlap. For instance, a hierarahiexical database such as Roget or
WordNet can be used to compute the semantic sityilafrany two word sensesde
articlgl. A very simple method of WSD is then to determivi@ch sense of a target
word has the greatest similarity to the wordssrsiirrounding context. However,
reported accuracy is slightly worse than Lesk usifgydNet glosses and relations.

Roget’s International Thesauris also a good source of knowledge about
semantic relationships; the approximately 1,00@kesder which all words are
categorized can be thought of as semantic classesrd senses. Masterman’s early
work (see Historical Context) used Roget for takgetd selection in machine
translation by examining overlaps in the lists e&tis that words fall under.

A second approach uses Roget (or, actually, angdbdatabase with semantic
categories including LDOCE’s subject codes) asuacsoof word lists for the
different semantic classes of an ambiguous wordoAd-classclassifier can then be
trained on the aggregate context of all the membikeesich class (see supervised
methods below). For example, to disambiguatene a classifier is built to
distinguish between the bird and machine classeg tise word listst{eron, grebe,
hawk, ...)Jand {ackhammer, drillbulldozer, ...)and their respective contexts. Even

though some of the words will add noise througlirtbn polysemy, enough are
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monosemous to still build an effective classifiBnis unsupervised method has

achieved 92% accuracy on homograph distinctions.

Selectional restriction-based methods

A selectional restrictionsee articlgis a constraint on the semantic type of the
argument or modifier of the head of a syntacticstitent. For example, w@rink gin
is to drink an alcoholic beverage, not to quafaedogame, sincdrink selects for an
object of type liquid. Common in the Al-paradigmsgfmantic analysis, this method
can be combined with syntactic analysis to progvelseliminate inappropriate
senses and so compose a consistent set of sert@mnpilates into a semantic
representation of a sentence. Selectional resingtare limited because they can be
too general or too strict (e.gny car drinks gasolineiolates the restriction that the
subject be animate). One solution is to view s&laet restrictions as preferences
(Wilks’s “preference semantics”) or as selecticesdociations. Aelectional
associationis a probabilistic distribution over the classéa aoncept hierarchy, such
as WordNet, that can express the likelihood of@ags occurring as, say, the object
of drink (e.g.,Prob(BEVERAGHdrink) versus Prob(GAMEHrink)). The distribution
is computed analogously to a word-class clasdifyfecombining corpus statistics of
occurrences afirink and its many syntactic objects with the semanéisses of the
objects in the concept hierarchy, such as WordSkét, the improved method does

not perform well enough on its own, and shouldrbated as a filter.

Connectionist methods

Connectionist methods are based on psycholingurstiaries that semantic

priming [see articlpplays a role in disambiguation in humans. In aotionist
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disambiguation spreading activation operates ovetaork of word concept nodes
and disambiguates all words simultaneously. Suaeesgrds in a sentence activate
nodes in the network, and activation spreads tiedlconcepts and inhibits other
concepts. For exampldrink would activate the beverage sensgiofand inhibit the
gamesense. At the end of a sentence, the conceptwititi¢he highest activation for
each word is output. Early experiments were notkmive since building the
networks was problematic, requiring manual intetisen However, lexical networks
can be built from definition texts of MRDs in a s&m of the Lesk Method (the
Collins English Dictionarywas used in one experiment that achieved 71.7%

accuracy.)

Domain-based methods

Domain-based methods make explicit use of domdarnmation to filter out
senses of a word that are inappropriate in theeotidomain. A basic approach first
determines the domain of a text by finding the LOEXDbject codeor similar (e.g.,
WordNet DOMAINS, a domain-annotated WordNet) thas the maximum
frequency over all content words. It then selduogsgense of a word with the most
frequent subject code. Improved versions detertiaelomain more accurately by,
for example, considering only the words in a windemeund the ambiguous word,
and then choosing the sense that maximizes théasityiwith a relevant domain in
the window.

A different approach builds a domain-specifeighborhoodof words or topic
signature for each sense of an ambiguous wordiérsach method, inspired by the

Lesk Method, a domain-specific neighborhood of adaeontains the words that co-
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occur significantly with the word over all sensdigiéons labeled by a given

LDOCE subject code (e.g., word senses labeledtivliEconomics code that
significantly co-occur witlbankinclude:account, into, out, monegic.). To
disambiguate the word in context, the neighborhwitd the greatest overlap with the
context is chosen.

Theone-sense-per-discourskeeuristic has been used in at least two wayst, Firs
one instance of a word can be reliably disambiglate given text, then all other
occurrences of the word can be labeled with thageseSecond, the contexts
surrounding all instances of a word in a given taat be aggregated as evidence for a
single sense.

A completely separate approach to domain-speds@ndbiguation islomain
tuning the sense inventory by removing unnecessary samsesords, grouping
related senses together, and extending it withigjzeed senses and terms. Domain
tuning turns WSD on its head to determine whictsesnn an inventory are relevant

to a given domain.

Supervised corpus-based methods

Supervised machine learning has proven to be thet sugcessful approach to
WSD, as a result of extensive research since e E2390s. As a rule, supervised
learning of WSD derives its model directly and pneihantly from sense-annotated
training examples, whereas unsupervised learniggntnmake use of a priori
knowledge, but a secondary source. Unsupervisedadetare discussed in the next
section.

Supervised learningmethods all follow the same basic methodology:
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1. A training collection is created by hand-annotating a sufficient nunaber
instances of each target word with their senseselaften hundreds of
examples are required for each word. A subsetetdtlection is reserved
for testing.

2. Each instance of a word and its context is reducedeature vector that
contains features of the sort described above.

3. For each word type, a training procedure buildaasifier using frequency
statistics of feature occurrences within each clgathered from the feature
vectors.

4. The set of classifiers is tested on the reservéa dad more iterations are
performed, modifying the conditions (e.g., seledeatures, training/test
split, and algorithm parameters), until a conclosgreached.

This methodology generates a set of classifieraldapof classifying new instances,
represented by their feature vectors.

Many algorithms for supervised learnirggeg articlkhave been applied to WSD
including: Bayesian networks, boosting, decisisislidecision trees, k-nearest
neighbor, maximum entropy, Naive Bayes, memory-théssrning, neural networks,
support vector machines (SVM), transformation-bdeathing, and vector similarity
models.

A binary (two-class) classifier, such as an SVM ba applied to WSD by
building a separate binary classifier for each seisa word, which classifies the
word as a member or not of the sense class.

A major result is that choosing the right featysace is more important than

choosing the right algorithm. For example, elimingta whole feature type (say
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collocations) has been shown to degrade performanoce than changing the
algorithm. That said, the currenthgst performing algorithm for WSD is the SVM,
because, in theory, SVMs can handle very high-dsioeral feature spaces, make no
assumptions about the independence of featureslinwdthe easy combination of
multiple sources of evidence. However, its relapegformance over, say, Naive
Bayes (which “naively” assumes feature independgmeguite small. In the
Senseval-3 English task, SVMs, a modified NaiveeBagnd ensembles were all in
the top ten (above 71.8% accuracy) separated bydral percentages.

A general distinction can be made betwdatriminative andaggregative
algorithms. The former base their classificatioradiew pieces (sometimes one) of
evidence in any given context, while the latterussalate all of the evidence in favor
of each class. Experiments show that each meth®dsstrengths and weaknesses
depending on the word, its sense granularity, andesdistribution. A discriminative
algorithm will be more capable in contexts whesergle feature is decisive: often for
verbs and adjectives, and many homograph-levehdigins. Aggregative algorithms
perform better when many pieces of weak evidenogbaee to reach a level of
confidence: more often in nouns and fine-grainetealistinctions.

Every learning algorithm has its biases, so contlang, orensemblesof diverse
algorithms tend to outperform single algorithmsabyodest margin (up to 5%).
Various combination strategies including voting @munt or confidence), probability
mixture models, and meta-learning have been exglo@ing performing best.

Many common machine-learning issues arise in W8Eh &s feature selection,
determining the optimum size of the training datag portability to new domains, but

one problem that has defined the field over the gesade is thenowledge
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acquisition bottleneck training data is difficult and expensive to produSenseval
has alleviated the problem somewhat, by organiaimgde-ranging data annotation
effort (see Evaluation); however, unsupervised oegshhave the potential to

overcome the problem in the long run.

Unsupervised corpus-based approaches

The holy grail of WSD is to learn to disambiguatéhwut any training data. In
their purest form, unsupervised approaches eschgwa ariori knowledge of word
meaning. This section describes two types of unsigel approach. The first is
sense inductionto actually discover word senses in a corpus using priori
knowledge of word senses, in effect, acting asuannaated lexicographer. (Note that
the “senses” induced are often callegbfd uses, because their character is different
to the word senses elucidated by lexicographetse)second disambiguates to an
existing sense inventory, but requires a seconsiauyce of knowledge such as a
parallel corpus or small amount of seed data ia@proach called bootstrapping
Hence, these second approaches are usually catiebeminimally supervised.

The underlying assumption of sense induction isghmilar senses occur in
similar contexts. Thus, the problem is characteriasclustering by contextual
similarity rather than as classification. Three Imogls are described below, which
each cluster a different representation of confExé first method is to apply a
clustering algorithm directly to the feature vest{gee above) of the instances of a
word using a vector similarity function such asinessimilarity. Data sparseness is
often a problem in smaller corpora and for therraemses of a word, but can be

somewhat alleviated through dimensionality reductidevertheless, rarer senses
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(e.g., smaller clusters) must still be removed ftbexmodel. Since senses are not
labeled, merely discriminated one from anotheeaicomparisons to other methods
of WSD are impossible. Applied to information retral, one experiment using a
model called Context Group Discrimination yieldetl4a4% improvement in retrieval
precision.

The second method clusters the list of neareshbei of a target word, that is,
the list of words that are semantically similathe target word. Contextual word
similarity [see articlg the degree to which two words occur in similantexts, can
be computed from the feature vectors. For exanpid@t has the neighbor&actory,
facility, refinery, shrub, perenniaindbulb. Clustering these words by their semantic
similarity results in two clusterstactory, facility, refineryand(shrub, perennial,
bulb), which represent two sensespidint. No results are available for its application
to WSD.

The third method is also based on word similatttyirst builds a graph (i.e.,
network) of words linked by relations of semantmitarity and/or co-occurrence.

The local graph surrounding a target word is tHastered using a graph-clustering
algorithm. The intuition is that the senses ofttrget word will correspond to loosely
connected components of the local graph (i.e.wigls in each component will be
related to each other more than they are to thesvioranother component). No
results are available for its application to WSD.

A word-alignedparallel corpus can be used in minimally supervised WSD. It has
been observed that an ambiguous word in a soungeidge is often translated into
different words in a target language dependinghersense of the word. The words in

the target language may themselves be ambigudhber sharing two or more senses
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with the source word or have other senses. Howéveifact that multiple different
source words will translate to the same target veartbe used in WSD. For example,
the three English wordslisaster, tragedyandsituationall translate t@atastrophen
a English-French parallel corpus. Even though hineet English words are ambiguous,
a single sense for them (“a calamity”) can be deiteed using a variant of the Lesk
Method. An implementation of this method achiev8B% accuracy using an
English-French machine translated corpus (the skb@hest unsupervised score on
Senseval-2 data).

Thebootstrapping approach starts from a small amount of seed dateaich
word: either hand-labeled training examples, amalsnumber of surefire decision
rules (e.g.playin the surrounding context bhssalmost alwaysndicates the
musical instrument). The seeds are used to traini@al classifier, using any
supervised method. This classifier is then usethemuntagged portion of the corpus
to extract a larger training set, in which only thest confident classifications are
included. The process repeats, each new clasédiag trained on a successively
larger training corpus, until the whole corpusaessumed. Seed decision rules can be
extracted from dictionaries, lexical database$t@mn automatically extracted
collocations. One system, using the latter approachieved 96.5% accuracy on a
few homographs. A further variant combines botliliadual corpus (not necessarily
word-aligned or parallel) with bootstrapping: irceatep, classifiers are trained for
both languages simultaneously using previouslysdiasl data from both languages.
Experiments achieve a 3-8% improvement over mogo&hbootstrapping on the

same data.
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Finally, an unsupervised technique for determirilrggmost frequent sensef a
word in a corpus has recently been developed clbeely related to the second
clustering method above. If one considers theofistearest neighbors of a target
word, then, following from the generalized Lesk Rtad, a majority of its neighbors
will be most similar to one of its senses, the niiexjuent sense. While this method
cannot disambiguate a word, it can be used askadiastrategy, when another
method is not sufficiently confident. Alternatively one-sense-per-discourse holds

for a given target word, then WSD is replaced byndim identification §ee articlg

EVALUATION

To progress as a science, word sense disambiguseis to be evaluated on a
common playing field, which has proven to be sesioballenge. Evaluating WSD is
difficult because of the different goals involvedthe research and application of
WSD algorithms. To illustrate, just about everyteys in the previous section was
evaluated on different words, sense inventoriasc{ally, of different sense
granularities), and types of corpus and applicatiendering direct comparison
meaningless. Furthermore, a largéerence corpusis required, with enough hand-
annotated examples of each word to cover all fétsses in a representative mixture
of contexts. Sense-annotation by hand is labonsgite, is difficult to do reliably, and
is unlikely to carry over to another applicatiors & result most systems had been
evaluated on only a few words, and often only atitbmograph level. However, over
the past decade, Senseval has a established a cofranmeework for the evaluation of
explicit and generic WSD algorithms. And, in a nesa, the task of explicit WSD is

now defined by the evaluation, rather than theiext@dn by the task.
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Accuracy against a reference corpus

WSD can be evaluated vitro, independent of any particular applicationjror
Vivo, in terms of its contribution to an application s@ashinformation retrieval. In
vitro evaluation, by far the most common methobhvesd for the detailed analysis of
explicit WSD algorithms over a range of conditiomiereas in vivo evaluation
provides an arguably more realistic assessmentiofaie utility of WSD and is the
only way to evaluate implicit WSD. The rest of teection focuses on in vitro
evaluation; evaluation in IR and other applicatior@s discussed already.

The basic metric for evaluation is simple accurgmyrcentage of correct taggings
taken over all instances of all words to be taggeareference corpus. Creating a
reference corpuis a process ahanual annotation. The accepted practice is to use
at least two trained annotators with a final agidr to resolve disagreements possibly
through discussion. Because annotation often umsomeonsistencies or other
problems in a sense inventory (such as missingndear senses), annotators can
provide feedback to lexicographers. For reasombctivity and consistency,
trained lexicographers should be used, but this \gechallenged by the Open Mind
Word Expert project, a large-scale Web-based atinaoteffort.

Two types of reference corpus are available: saingtel running. The former
annotates a sample of words and often providesashort surrounding context for
each instance. The latter annotates all wordsrining text. Table 3 lists the main
reference corpora for English (Senseval has alseiged many corpora in other
languages).

<Table 3 near here>
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The relative performance of a system is generabgssed against thaselineof
selecting the most frequent sense, informationikeadailable from many
dictionaries (often, the first sense listed), @nirthe manually-annotated reference
corpus, or indeed from the unsupervised methodidssd above. The Lesk Method
has also been used as a baseline.

An upper bound on WSD is more difficult to come by: perfect didziguation
cannot even be expected from a person, given tiueenaf word meaning and context.
Thus, the natural upper boundriger-annotator agreement the percentage of cases
where two or more annotators agree, before arimitrainter-annotator agreement
also serves as an indication of the difficulty amegrity of the task. A low upper
bound would imply that the task is ill-defined ahdt WSD is without foundation.
One early study reported the dangerously low vafu@%, and the Senseval-3
English lexical sample task had an equally low galdowever, inter-annotator
agreement is a misleading upper bound on WSD, sin@bitrator provides a third
voice.Replicability is arguably a more sensible upper bound. Replitals the
level of agreement between two replications ofstume annotation exercise,
including arbitrators. A respectable 95% has begonted, however, replicability has
not been used in practice because it doubles thetaon workload.

Evaluation is not so simple as this. If a systemalastain from tagging a target
word instance or give multiple answers, accuracgtrbe broken intprecision (the
percentage of system answers that are correctje@ad (the percentage of all test
instances that a system answers correctly). Artiaddi scheme reporfse-grained
andcoarse-grainedscores, the latter grouping all subsumed finerg@isenses into a

single coarse-grained sense, so that choosingfahg genses is considered correct.
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This scheme is possible using a hierarchical irargnivhere the coarse-grained level
might represent homographs or other groups ofaéla¢nses. A final scheme
provides partial credit for tagging with a simikdbeit incorrect sense of a target word.
One problem with averaging over all instances (@hdenses) is that performance
on particular words and word senses cannot be wigesince the distribution of
senses is so skewed, these metrics could covéreugctual performance of an
algorithm that is only accurate on the most freqsenses, completely failing on the

rarer senses.

Senseval

Senseval has established through three open elgalgadercises, a framework for
the evaluation of WSD that includes standardize#l tiescriptions and evaluation
methodology. It represents a significant advandéerfield because it has focused
research, produced benchmarks, and generated stidstasources in many
languages.

Senseval defines two main tasks. Tdsacal sample taskis to tag a small sample
of word types. The sample is a stratified randomgda that varies on part of speech,
number of senses, and frequency. Corpus instaeesicg as many of each word’s
senses as possible are selected and manually tethtiacreated a sampled reference
corpus. Thall-words task s to tag all instances of ambiguous words in nugext.
Here, the issue is to select complete texts wahfficient variance in terminology
and average polysemy. The all-words task is a materal disambiguation task since
the whole text is provided as evidence for disamiign, and could lead ultimately

to a generic component for WSD. However, the ldxdaaple task is arguably better
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science: it allows one to analyse a wider rangehehomena, and to focus on

problematic words or words that will have a sigrafit impact on an application.

Other ways to evaluate

When there is no reference corpus to either traim for test onpseudo-words
provide an alternative. To create a pseudo-woedt @ll the instances of two or more
randomly selected words as the same word. Thecalij-ambiguous word has as its
“senses” the original words. WSD then proceeds atlymAccuracy is given in terms
of correct replacements of the original words. Esewords seem attractive, but they
have been criticized because 1) they do not nedlyslsave natural skewed word-
sense distributions, and 2) they do not have seetsed to each other the way that a
polysemous word’s senses relate. Thus, it is queale what one can learn about
context and word meaning through pseudo-words.

Unsupervised sense induction cannot be easily atedwagainst a reference corpus.
In vivo evaluation is one option. A second is tonnaly map the clusters to word
senses, which is subjective. If the clusters arelé, as in the nearest neighbor
approach, then automated alignment is possiblegliery the alignments are unlikely
to be perfect because of disparities between wsed and word senses. If a parallel
corpus is used, then one method is to create tfaiglacorpus by machine translation
of a reference corpus; however, this method coalaproblems because the MT
system could easily make the same errors in tavged selection that an explicit

WSD algorithm would make.
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CURRENT RESEARCH EFFORTS

Explicit word sense disambiguation to a fixed sensentory (as a constrained
case of general lexical disambiguation) is a robasit. The three evaluation exercises
run by Senseval show that over a variety of wope$y frequencies, and sense
distributions, systems are achieving consistentrasgectable accuracy levels that are
approaching human performance on the task. The waaiation in accuracy is due to
the sense inventory not meeting the three Cs (stemsiy, clarity, and coverage).

Disambiguating to the homograph level is essegtsilved, if greater than 90%
accuracy is enough for the application. At finareks, support vector machines are
the current best method, followed closely by n&ages (both supervised corpus-
based methods), achieving accuracy of 73%.

However, effective application-specific WSD is|sdih open problem.

Current research efforts are focused on:

Error analysis to determine the factors that afM#&D and the specific
algorithms: What makes some words and senses ¢éasisambiguate than
others?

» Unsupervised approaches to overcoming the datasao bottleneck,
especially through bootstrapping and machine legrtechniques such as co-
training.

» Exploring the sense distributions of individual @weyand especially focusing
on the rarer senses that are currently difficultiSD.

» Developing better sense inventories and sensertiees.

» Establishing an evaluation framework for applicatgpecific WSD (within

Senseval).
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» Domain-specific issues, such as domain tuning amoach identification.
» Treating named entities and reference as a WSOgmoiWhen do two

occurrences of the same name refer to the samadndl.
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Figure 1. Skew of the distribution of words by nienbf sense®.
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4 BNC words are plotted on the horizontal axis inkrarder by frequency in the
BNC. Number of WordNet senses per word is plottedhe vertical axis. Each point

represents a bin of 100 words and the average nuohisenses of words in the bin.
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Figure 2. Skew in the distribution of the sensewofds”
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® The chart plots the distributions for 12 word sksin Semcor ranging from 1-
sense words to 12-sense words. In each class ¢eaghn), the senses are ordered by

frequency, normalized per word, and averaged dVaraads in the class.
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Table 1. Examples of lexical ambiguity. Senses fRnmceton WordNet 2.0.

Word Number of senses  Examples

call 28 verb senses,  “to assign a name to”, “to get into

13 noun senses  communication by telephone”, “to utter a sudden

loud cry”, “to lure by imitating the characteristic

call of an animal”, “order, request, or command

to come”, “order or request or give a command

for”
bank 8 verb senses, “financial institution”, “sloping land”
10 noun senses
crab 4 verb senses, “to direct an aircraft into a crosswind”, “to

7 noun senses scurry sideways like a crab”, “to fish for crab”,

and “to complain”

quoin 3 noun senses “expandable metal or woodegevesied by
printers to lock up a form within a chase”, “the
keystone of an arch”, “solid exterior angle of a
building; especially one formed by a

cornerstone”
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Table 2: Average polysemy of WordNet 2.0 and LDC#®E the BNC.

Resource WordNet 2.0 LDOCE
Number of words 125,784 35,958
Number of ambiguous words 26,275 14,147
Number of senses 77,739 76,060
Average polysemy (all words) 0.618 2.12
Average polysemy (ambiguous words) 2.96 3.83
Average polysemy of BNC (all words) 7.23 8.87
Average polysemy of BNC (ambiguous 8.04 10.02

words)
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Table 3. Manually-annotated reference corpora iglighn’

Corpus Number of words  Size (tagged Sense inventory
types instances)
line, hard, serve 3 12,000 WordNet 1.5
Interest 1 2,369 LDOCE
HECTOR 300 200,000 HECTOR

Semcor 23,346 234,113 WordNet 1.6

DSO Corpus 191 192,800 WordNet 1.5

Senseval-1 41 8,448 WordNet 1.6
Senseval-2 sample 73 12,939 WordNet 1.7.1
Senseval-2 running 1,082 2,473 WordNet 1.7.1
Senseval-3 sample 59 11,804 WordNet 1.7.1
Senseval-3 running 960 2,041 WordNet 1.7.1
Open Mind Word Expert 288 /60 29,430/21,378  WordNet 1.7.1

1.0/2.0

¢Compiled from Edmonds and Kilgarriff (2002), Serslenvorkshop proceedings, and

personal contacts.
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