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INTRODUCTION 

Lexical ambiguity is common to all human languages. Indeed it is a fundamental 

defining characteristic of a human language: a relatively small and finite set of words 

is used to denote a potentially infinite space of meaning. And so we find that many 

words are open to different semantic interpretations depending on the context. These 

interpretations can be called word senses. From very frequent words such as call (28 

verb senses in the Princeton WordNet 2.0), to medium frequency words such as bank 

(10 noun senses), to infrequent words such as crab (4 verb senses), to very rare words 

such as quoin (3 noun senses), lexical ambiguity is pervasive and inescapable. Table 1 

lists some of the WordNet senses of these words. 

<Table 1 near here> 

Lexical disambiguation in its broadest definition is nothing less than determining 

the meaning of a word in context. Thus, it is thought to be “AI-complete” – it is as 

difficult as any of the hard problems in artificial intelligence including machine 

translation and common-sense reasoning. Of course, it is not an end in itself, but is an 

enabler for other tasks and applications such as parsing, semantic analysis of text, 

machine translation, information retrieval, lexicography, and knowledge acquisition. 
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In fact, it was first formulated as a distinct computational task during the early days of 

machine translation in the late 1940s, making it one of the oldest problems in natural 

language processing. 

Lexical disambiguation is at the intersection of several fields including linguistics, 

cognitive science, lexical semantics, lexicography, and, of course, computational 

linguistics. But it is the latter two fields that have had the most influence on the 

research, the majority of which has focused on more constrained versions of the 

problem. 

In the field of computational linguistics, the problem is generally called word 

sense disambiguation (WSD): To determine which sense of a word is activated by 

the use of the word in a particular context. For example, the context (in its broadest 

sense including both the sentence and text itself and any other knowledge the reader 

might have of such situations), can disambiguate call in “She was called into the 

director’s office.” Thus WSD is essentially a task of classification; word senses are 

the classes. This is a traditional and common characterization of WSD that sees it as 

an explicit process of disambiguation with respect to a fixed inventory of word senses. 

Words are assumed to have a finite and discrete set of senses—a gross reduction in 

the complexity of word meaning.  

This characterization has led to a dream that an accurate generic component for 

WSD will one day be developed. But we may never see this dream come true, since 

WSD is highly application-dependent and domain-dependent. For one, a task-

independent sense inventory is not a coherent concept: each task requires its own 

division of word meaning into senses relevant to the task. For example, the ambiguity 

of mouse (animal or device) is not relevant in English-French machine translation, but 
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is relevant in information retrieval. The opposite is true of river, which requires a 

choice in French (fleuve ‘flows into the sea’, or rivière ‘flows into a river’). Moreover, 

in any given domain of language use, many words are not ambiguous. 

Second, completely different algorithms might be required by different tasks. In 

machine translation, the problem takes the form of target word selection. Here the 

‘senses’ are words in the target language, which often correspond to significant 

meaning distinctions in the source language (bank could translate to French banque 

‘financial bank’ or rive ‘edge of river’). In information retrieval, a sense inventory is 

not necessarily required, because it is enough to know that a word is used in the same 

sense in the query and a retrieved document; what sense that is, is unimportant. 

Third, explicit WSD has not yet been convincingly demonstrated to have a positive 

effect on any significant application. In many applications lexical disambiguation 

occurs implicitly by virtue of other operations such as domain identification or a 

phenomenon called mutual disambiguation. 

Nonetheless, as a scientific endeavor, explicit WSD is very attractive: it is easy to 

define, experiment with, and evaluate, and as a result is leading us to a better 

understanding of word meaning and context. 

Research has progressed steadily to the point where explicit WSD systems achieve 

consistent levels of accuracy on a variety of word types and ambiguities. The best 

performing systems use a supervised corpus-based approach, in which a classifier is 

trained for each distinct word over a corpus of manually-annotated examples of each 

word in context. Bayesian learning and support vector machines have been the most 

successful algorithms to date, probably because they can cope with the very high-

dimensionality of the feature space. Virtually any feature derivable from the 
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surrounding context of a word has been used. The field is particularly rich in the 

variety of techniques employed, from dictionary-based methods that use the 

knowledge encoded in lexical resources, to completely unsupervised methods that 

cluster occurrences of words, thereby inducing word senses. 

Current accuracy on the task is difficult to state without a host of caveats. On 

English, accuracy at  the homograph level is routinely above 90%, with some methods 

on particular homographs achieving 96.5%. On finer grained sense distinctions, 73% 

accuracy was reported at Senseval-3, an open evaluation exercise held in 2004. The 

baseline accuracy, the performance on the simplest possible algorithm of always 

choosing the most frequent sense, was 55%. An upper bound on accuracy, a measure 

of the difficulty of the task based on human performance, was 67% (but this figure is 

low because it was computed on a superset of the words used in the exercise).  

Unsupervised systems do not perform as well. At Senseval-3, the best unsupervised 

systems achieved about 58% accuracy (below the baseline of 61%). Performance is 

highly affected by many factors including the granularity of the sense distinctions, the 

quality of the sense inventory, and the words chosen for evaluation. 

The rest of this article discusses the above issues in greater detail. Note that 

although lexical ambiguity is pervasive in all human languages, to a large extent the 

methods of disambiguation are independent of language. Thus, most of the examples 

in this article are drawn from the research done on English, the language most 

employed in research. 

MAKING SENSE OF WORDS 

Humpty Dumpty said ...: “There’s glory for you.” 
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“I don’t know what you mean by glory,” Alice said. 

Humpty Dumpty smiled contemptuously. “Of course you don’t—till I tell you. 

I meant, There’s a nice knock-down argument for you.” 

“But ‘glory’ doesn’t mean a ‘nice knock-down argument,’” Alice objected. 

“When I use a word,” Humpty Dumpty said in rather a scornful tone, “it 

means just what I choose it to mean—neither more nor less.” 

(Lewis Carroll, Through the Looking Glass.) 

Polysemy 

Lexical semantics [see article] is the theoretical study of word meaning, one aspect 

of which is lexical ambiguity, or polysemy. Word meaning is in principle infinitely 

variable and context sensitive. It is does not divide up easily into distinct or discrete 

sub-meanings. Lexicographers frequently discover in corpus data loose and 

overlapping word meanings, and standard or conventional meanings extended, 

modulated, and exploited in a bewildering variety of ways. The result is that most 

sense distinctions are not as clear as the distinction between bank as a money lender 

and bank as a river side. For example, the former bank has several closely related 

meanings including: 

the company or institution, 

the building itself, 

the counter where money is exchanged, 

a money box (piggy bank), 

the funds in a gambling house, 

the dealer in a gambling house, 
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a supply of something held in reserve, and 

a place where the supply is held (blood bank). 

Ambiguity of this sort is pervasive in languages and is often difficult resolve, even 

for people. A given use of a word will not always clearly fall into one of the available 

meanings in any particular list of meanings. Nevertheless, lexicographers do manage 

to group a word’s uses into “distinct” senses, and all practical experience on WSD 

confirms the need for representations of word senses. 

Lexical semantics defines a spectrum or hierarchy of distinctions in word meaning 

in terms of granularity : 

Part-of-speech 

Homograph 

Polysemy 

Regular Polysemy 

Word Uses 

Fixed expressions 

At a coarse grain, many words do have clearly distinguishable senses. A word has 

part-of-speech ambiguity if it can occur in more than one part-of-speech. For 

example, sharp is an adjective (“having a thin edge”), a noun (“a musical notation”), a 

verb (“to raise in pitch”), and an adverb (“exactly”). Part-of-speech ambiguity does 

not necessarily indicate distinct meanings (e.g., the relation between a verb and its 

nominalization), but it can be resolved by part-of-speech tagging [see article], a 

simpler and more accurate class of algorithms than the WSD algorithms given below. 

In the majority of WSD systems, part-of-speech tagging is used as an initial step, 

leaving the WSD algorithm to focus on within-part-of-speech ambiguity. 
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A homograph is a word that has two or more distinct meanings, but the definition 

is some arbitrary. Etymology [see article] is a major source of homographs: for 

example, the bow of a ship derives from the Low German boog, whereas the bow for 

firing arrows derives from the Old English boga. (Incidentally, bow is a good example 

of the potential for WSD in a text-to-speech application to point to the right 

pronunciation. Resolving homographic ambiguity routinely achieves above 90% 

accuracy, and is generally considered a solved problem. 

Hence, polysemy is the real challenge. Most common words have a complex 

structure of interrelated senses below the homograph level, as exemplified by bank 

above. Even rare and seemingly innocuous words (e.g., quoin, see table 1) have 

polysemous senses. Individual senses are often related by a process of extension or 

modification of meaning—it could be historical, functional, semantic, or metaphorical. 

For example, the mouth of a bottle, a cave, and a river are defined by analogy to the 

mouth of a person. Sometimes the relation is so close to make disambiguation almost 

impossible, without background knowledge on why the distinction was drawn. 

Consider two WordNet 2.0 senses of national: 1) in the interests of the nation, and 2) 

concerned with an entire nation or country. 

When the relation is systematic across a class of words it is called regular 

polysemy, and includes ambiguities such as physical-object/content (book), and 

institution/building (bank). Regular polysemy is not usually explicitly treated in 

dictionaries or in WSD, and indeed, in some cases both senses can be active at once 

(book in I’m going to buy John a book for his birthday). 

Many other phenomena make word meaning difficult to formalize including 

slightly differing word “use” in context (e.g., ball as a tennis ball or football has 
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different associations in text), fixed expressions (piggy bank), metonymy and 

metaphor (crown in the lands of the crown), vagueness in context (national and book). 

Words can have as many meanings and subtle variations as people give to them. So, 

is the very notion of word-sense suspect? Some argue that task-independent senses 

simply cannot be enumerated in a list, because they are an emergent (psychological) 

phenomenon, generated during production or comprehension with respect to a given 

task. Others go further to argue that the only tenable position is that a word must have 

a different meaning in every distinct context in which it occurs—words have infinite 

senses. 

Notwithstanding the theoretical concerns to the logical or psychological reality of 

word senses, the field of WSD has successfully established itself by largely ignoring 

lexical semantics. As with modern lexicography [see article] which is based on the 

intuition that word uses do group into coherent semantic units, the field has been 

defined by a practical problem, which happens to be well-suited to empirical and 

computational techniques. The inherent difficulty of lexical disambiguation proper is 

of course acknowledged—our understanding of lexical semantics is just far from 

adequate. 

Context and disambiguation 

If polysemy is an intrinsic quality of words, then ambiguity is an attribute of text.  

Whenever there is uncertainty as to the meaning that a speaker or writer intends, there 

is ambiguity. So, polysemy indicates only potential ambiguity, and context works to 

remove ambiguity. 
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Principles of  effective communication would have one avoid vagueness and 

ambiguity. This would mean eliminating all potential lexical ambiguity by creating a 

context that forces only one possible interpretation of every word. Difficult to achieve,  

many a verbal dispute hinges on the confused multiple meanings of key terms. But 

sometimes ambiguity is desired and explicitly fashioned. Puns, for instance, require 

not only that two (or more) meanings be active simultaneously, but that the reader 

recognizes the ambiguity: Time flies like an arrow. Fruit flies like a banana.  

Intentional ambiguity is not just for humor. Everyone is familiar with the politician 

who uses ambiguous or vague terminology in the service of diplomacy, equivocation, 

or the evasion of difficult questions. And sometimes potential ambiguity just doesn’t 

matter and is not worth the effort to resolve, because either reading is acceptable (e.g., 

book or national, above). 

Now, in normal well-written text or flowing conversation, potential ambiguity 

generally goes unnoticed by people. The effect is so strong that some people can’t 

find the pun that’s in front of their nose. Evidence suggests that people use as little as 

one word of context in lexical disambiguation. This indicates that context works very 

efficiently ‘behind-the-scenes’ in disambiguation by people. 

But to a WSD system every polysemous word is ambiguous. It must resolve the 

ambiguity by using encoded knowledge of word meaning and the evidence it can 

derive from the context of a word’s use. Thus, word meaning and context are core 

issues in WSD. 
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Measures of difficulty 

This section introduces several measures of the difficulty of WSD, which can be 

computed from the distribution of word senses in text: 

• Average polysemy, 

• The most frequent sense of a word, and 

• The entropy of a sense distribution. 

A fourth measure, inter-annotator agreement, is discussed in the section on Evaluation. 

How much potential ambiguity is there in text? First, consider dictionaries. In 

practical terms, there is a limit to the amount of polysemy that a vocabulary can bear; 

that is, only a finite number of concepts are lexicalized and granted the status of ‘word 

sense’. Longman’s Dictionary of Contemporary English (LDOCE), for example, lists 

76,060 word senses spread over 35,958 unique words (“lexical units,” to be precise). 

Of these unique lexical units, 38% (14,147) are polysemous, so the average 

polysemy of LDOCE is 3.83 senses per polysemous word. Every dictionary has a 

different division of meaning. WordNet 2.0 has an average polysemy of 2.96 senses 

per lexical unit (125,784 unique lexical units, 26,275 ambiguous covering 77,739 

senses). 

Now consider text. Table 1 provides a clue that the more frequent a word is in 

actual text, the more senses it is likely to have. This skewed distribution was first 

observed by George Zipf, who attributed it to his Principle of Least Effort. Zipf 

argued that to minimize effort a speaker would ideally have there be a single word 

with all meanings, whereas the hearer would prefer each word to have a single 

different meaning. These competing pressures led Zipf to the “law of meaning”, a 
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power-law relationship between the number of senses of a word, s, and its rank, r,  in 

a list sorted by word frequency: 

s ∝ r-k 

 He empirically estimated an exponent k=0.466 using the Thorndike-Century 

dictionary. Zipf thereby explained the origin of word senses. (Note that this law is 

different from “Zipf’s Law” about the distribution of word frequencies; [see article on 

Zipf Law]). 

<Figure 1 near here> 

Figure 1 graphs the skew of words in the British National Corpus (BNC) with 

respect to WordNet 2.0 senses. BNC words (root forms of nouns, verbs, and 

adjectives) in rank order by frequency in the BNC are plotted against the number of 

WordNet 2.0 senses per word. Each point actually corresponds to the mean number of 

senses in a bin of 100 words in rank order. The distribution is a power-law with the 

exponent k=0.404, very close to Zipf’s estimate. Clearly, a few very frequent words 

are very polysemous, and most words, on the tail, have only 1 or 2 senses. Thus, the 

average polysemy of a text, considering word occurrences, will be higher than a 

dictionary would suggest. The BNC has an average polysemy of 8.04 WordNet 2.0 

senses per polysemous word (84% of word occurrences are potentially ambiguous), 

and 10.02 LDOCE senses. The above figures are summarized in table 2. 

<Table 2 near here> 

An observation is that data sparseness is unavoidable for most ambiguous words in 

the corpus, which implies there will be a problem in discovering the contextual clues 

for disambiguation. 
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Average polysemy is unsatisfactory as a measure of difficulty since it might 

actually be an overestimate—the division of meaning might not match the domain of 

discourse or the task. A heuristic called one sense per discourse states that words are 

not ambiguous within a single discourse: a given word will be used in the same sense 

throughout a given document, or more strongly throughout texts in the same domain. 

For example, in weather reports, wind will always have the obvious sense, and none 

of its other senses (8 noun senses in WordNet 2.0). Average polysemy would drop to 

1.0, putting WSD out of a job. However, even domain-specific texts can contain 

potentially ambiguous words. For example, line in text about electronics can mean at 

least a wire in a circuit, a product line, a production line, and a “bottom line”. One 

study reports that 33% of words in Semcor (see below) have multiple senses per 

document. So, a system has to decide for what words and domains the one-sense-per-

discourse heuristic applies. Moreover, many applications are open-domain, such as 

wide-coverage machine translation and web/news search engines, and would benefit 

from a domain-independent WSD component. 

A more accurate way to calculate average polysemy is to use a sense-tagged corpus 

to count the senses that are actually attested in the corpus. Semcor is a 234,000-word 

corpus manually tagged with WordNet 1.6 senses. It has been extremely valuable in 

WSD research. The average polysemy of Semcor is 6.3 senses per word—not all 

senses are used in the corpus.  

Not only is the distribution of words with respect to number of senses skewed, but 

also the distribution of senses of a word. Figure 2 reveals that in Semcor, the most 

frequent sense of a word accounts for the majority of the word’s occurrences. The 

distributions (power-laws again) of 12 word classes in Semcor ranging from 1-sense 
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words to 12-sense words are shown in 12 columns. Senses are ordered bottom-to-top 

by the proportion of occurrences of the word that they account for, normalized per 

word, and averaged over all words in the class. Data sparseness is also a problem for 

the rarer senses of a word. Choosing the most frequent sense provides a high baseline 

to measure performance against: in Semcor it achieves 39% accuracy against 18% for 

random choices.  

<Figure 2 near here> 

Difficulty can also be assessed with respect to an individual word, in terms of its 

number of senses, the proportion of its most frequent sense, and sense entropy. Sense 

entropy is a measure of the skew in a word’s sense distribution. High entropy 

represents a less skewed, and therefore more difficult problem [see article on entropy]. 

Studies show that the accuracy of WSD algorithms (supervised learning methods, in 

particular, were analysed) is roughly correlated with task difficulty according to any 

of the above measures. For example, when the proportion of the most frequent sense 

exceeds 80%, algorithms do not do any better than the most frequent baseline.  

APPLICATIONS AND THE SENSE INVENTORY 

A long-standing debate is whether WSD should be thought of as a generic 

component, a kind of black box, that can be dropped into any application, much like a 

part-of-speech tagger, or as a task-specific component designed for a particular 

application in a specific domain and integrated deeply into a complete system. On the 

one side, research into explicit WSD has progressed steadily and successfully to a 

point where some people question if the upper limit in accuracy has already been 

attained. On the other side, explicit WSD has not yet been convincingly demonstrated 
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to have a positive effect on any significant application. Only the integrated approach, 

with disambiguation often occurring implicitly by virtue of other operations, has been 

successful. The one side is clearly easier to define, experiment with, and evaluate; the 

other has applications and threatens the need for explicit WSD altogether. The 

majority of researchers who focus on WSD take the former side. 

The debate can be explained in terms of the sense inventory. Every application of 

word sense disambiguation requires a sense inventory, an exhaustive listing of all the 

senses of every word that an application must be concerned with. The nature of the 

sense inventory depends on the application, and the nature of the disambiguation task 

depends on the inventory. The three Cs of sense inventories are: clarity, consistency, 

and complete coverage of the range of meaning distinctions that matter. Sense 

granularity  is a key consideration: too coarse and some critical senses may be missed, 

too fine and unnecessary disambiguation errors may occur. For example (repeated 

from the introduction), the ambiguity of mouse (animal or device) is not relevant in 

English-French machine translation, but is relevant in information retrieval. The 

opposite is true of river (fleuve ‘flows into the sea’, or rivière ‘flows into a river’). 

Thus, the source of the sense inventory is the main decision facing all researchers 

and application developers. Below are described the four main sources of sense 

inventories, and three main application areas. 

Four sources of sense inventories 

Dictionary-based inventories have their source in machine-readable dictionaries 

(MRDs). Because of their early availability, before large textual corpora, some of the 

seminal work in WSD relied on MRDs, and many current methods extract knowledge 
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from MRDs. LDOCE has seen the most use in WSD.  It provides hierarchical sense 

distinctions from the homograph level down to a fine granularity, and entries include 

extra information useful in WSD such as subject codes and example sentences. 

LDOCE is a commercial product, but another dictionary, HECTOR, was developed 

primarily as a research tool by Digital Equipment Corporation and the Oxford 

University Press, one of whose goals was to support WSD research. HECTOR was 

used in Senseval-1 (see Evaluation section) and could have developed into a very 

well-used resource: it is linked to a sense-annotated corpus, from which the senses 

were derived. However, it is incomplete, covering about 1,400 lexical entries. 

Dictionary-based inventories have several disadvantages. Dictionaries, whose 

market is people (not NLP researchers or application developers), are subject to 

standard market pressures, which dictate the size of the dictionary, the coverage and 

depth, and crucially the granularity and interpretation of sense distinctions. As a result, 

the senses may not match those that are required by the application. Dictionaries also 

assume the vast knowledge of a human reader, and so leave out ‘common sense’ 

information that would we very useful in WSD. 

A lexical database (or lexical knowledge base) is a step beyond the MRD. The 

main example, WordNet, has become the de facto standard in WSD research (for 

English; WordNets in other languages have also been used in WSD). WordNet shares 

many of the advantages and disadvantages of MRDs, because although is was 

designed for research, it was not specifically designed for WSD. It has the significant 

advantage that senses, or “synsets,” form a semantic network (primarily a hierarchy), 

which has been very useful in WSD, for example, to compute the relatedness between 

word senses. Its disadvantages are that it focuses on concept similarity rather than 
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what makes two senses different, and that it is too fine-grained for applications and 

even for human annotators to reach high agreement. The latter disadvantage can be 

overcome by grouping closely-related senses, depending on the task and corpus. A 

thesaurus, especially Roget’s International Thesaurus with its extensive index, can 

also be used as a sense inventory: each entry of a word under a different category 

usually indicates a different sense. 

A multilingual dictionary can also form a sense inventory. The translations of a 

word into another language can serve as word sense labels, since the different 

meanings often translate into different words. This phenomenon is most consistent for 

homographs (e.g., change into French changement (“transformation”) or monnaie 

(“coins”), but even very fine-grained distinctions are sometimes lexicalized 

differently, especially in distantly-related language pairs (e.g., Chinese lexicalizes the 

building/institution polysemy of church:  教堂 ‘building, e.g., temple’, and 教会 

‘institution’). One advantage of translations is to provide a practical level of sense 

granularity for many applications, especially machine translation. But the major 

advantage is the possibility to easily acquire large amounts of training data  from 

parallel texts. The disadvantage is that, outside of machine translation in the given 

language-pair, the word senses do not always carry over to other language-pairs or 

applications (e.g., interest in three of it major senses (“sense of concern”, “legal 

share”, “financial accrual”), corresponds to one word in French, intérêt). One also 

loses the extra information contained in MRDs and lexical databases. 

Automatically induced sense inventories are a response to the disadvantages of 

dictionaries and other hand-built resources. By deriving a sense inventory directly 

from a corpus, the right level of sense granularity can be achieved and no external 
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resources are required. An bilingual sense inventory can also be induced from a 

parallel corpus (i.e., a corpus in two languages), by word-aligning the corpus. The 

advantage of the approach is also its disadvantage: an inventory that directly 

characterizes the sense distributions of a corpus cannot be easily used with a different 

corpus. Also, it can be difficult to get a corpus that is large enough with evidence for 

each important sense (at least 50 instances per sense). The induced senses may not 

have human-readable labels, making it difficult to map the induced inventory to 

another (such as WordNet), which makes system comparison problematic. 

Applications 

Machine translation 

Early researchers in machine translation (MT) [see article] felt that the inability 

to automatically resolve sense ambiguity was a key factor in the intractability of 

general MT. However, explicit WSD has yet to been shown to be useful in real MT 

applications. Instead, implicit disambiguation, as target word selection,  has been 

used in MT. 

Domain plays a strong role in disambiguation (recall the one-sense-per-discourse 

heuristic above). Most real MT systems rely on specialized dictionaries for each 

domain that leave most words unambiguous. Any remaining serious ambiguity can 

often be handled using hand-crafted rules. In fact, even general domain MT systems, 

such as Systran, reportedly use extensive sets of hand-crafted rules to get major sense 

distinctions right. So, it’s not that WSD is ineffective, it’s just subsumed by a 

different semantic process: developing lexical resources (see below). 
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Statistical MT systems resolve ambiguity in a different manner. Roughly, statistics 

model how a source word or sequence of words translates into the target language. 

The model induces a sense inventory with translation probabilities for target word 

selection. A good model of target language sequences is also required. For example, 

one early statistical MT system makes the following incorrect translation (from 

French to English): 

Je vais prendre ma proper decision. 

I will take my own decision. 

because it chooses the most common translation of prendre (take); the model does 

not realize that take my own decision is improbable because it knows only about 

three-word sequences (trigrams). In this case, an explicit WSD component improved 

the accuracy of the overall system by 13%. But this line was never pursued, since it 

was thought better to improve the translation model itself, by using a more structured 

representation of the context. Then, lexical disambiguation would occur implicitly, 

but would rely on the same type of contextual information as explicit WSD uses. 

Lexicography and information extraction 

A broad range of applications in knowledge acquisition can make use of WSD. In 

particular, lexicography [see article] and WSD have a mutual relationship in that 

lexicographers build the sense inventories that WSD disambiguates to. In productive 

use, WSD and lexicography can work in a loop, with WSD providing rough sense 

groupings to lexicographers, who provide better sense inventories and sense-

annotated corpora to WSD. The HECTOR project (see above) was the first attempt to 

do this, but it was never fully realized. Later efforts have occurred within the Senseval 
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framework—senses that are difficult for human annotators or for systems are fed back 

to lexicographers for improvement. 

Lexical resources and knowledge-bases are continuing to grow in many languages. 

WSD is playing a key role to map between resources to create consistent multilingual 

resources (for example to map between WordNets in different languages).  

WSD has been used to disambiguate the definitions and example sentences in 

dictionaries, to better ‘link up’ the dictionary. End user applications might include an 

intelligent dictionary  that can find the right word sense given the context of a word, 

making dictionaries easier to use for second-language learners. 

In other knowledge acquisition efforts, such as information extraction  and 

filtering  [see article] used in the intelligence community, word meaning is crucial. 

Information extraction has to build a databaseof, say world events, by linking textual 

references to the right concepts in the database or ontology. An information filtering 

system might be set up to flag references to, say, illegal drugs; false hits involving 

medical drugs would have to be avoided. Often such systems rely on hand-crafted 

disambiguators for the word and senses in question. Named-entity classification and 

co-reference determination [see article] is basically WSD for proper names. 

Information retrieval 

Information retrieval  (IR) [see article] has seen the most work to prove explicit 

WSD in an application. Our intuition is that WSD should help to improve IR systems 

by removing those hits to a query in the wrong sense of a word in the query. Consider 

querying for banks to invest with, and receiving results about the Amazon river. 

However, the general consensus in the IR community is that explicit WSD makes 
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only marginal improvements in precision, and in some cases degrades performance. 

The reasons are the same as for MT: either the IR system is domain-specific, which 

significantly reduces the problem, or mutual disambiguation occurs. Mutual 

disambiguation is the phenomenon that the natural co-occurrence of words in queries 

and documents tend to disambiguate one another. For example, the query “bank to 

invest with” would retrieve a document containing bank and invest (since IR systems 

generally index and retrieve on words), in which bank most likely happens to be used 

in the financial sense (bank in its river sense would not tend to co-occur with invest). 

Mutual disambiguation is another form of implicit disambiguation, directly encoding 

the same type of contextual information as explicit WSD uses. 

In IR, explicit WSD is applied by indexing word senses rather than words, and 

then performing WSD on any input query. It has been suggested that 90% accuracy is 

necessary to improve performance, and that a 20-30% error rate is equivalent to no 

disambiguation at all. Anything less will degrade performance. Current WSD does not 

approach this level of accuracy except for homographs; but then, it is often said that 

only homograph level distinctions are relevant in IR, since matches of different 

polysemous senses could well be desirable to the user. But consider the word ball, 

which has a fine-grained “ambiguity” with respect to different sports, which could be 

relevant to a user’s information need. This impliess that choosing the right sense 

inventory is dependent not only on the collection, but also on information needs of the 

users. 

WSD would be potentially effective in two cases. First, it would improve 

performance on short 2-4 word queries (common on Web search engines), where 

mutual disambiguation does not work consistently. Unfortunately, short queries are 
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also difficult for WSD techniques for the same reasons of lack of context. Second, 

when query expansion is used (i.e., to add synonyms and other related words to 

queries), WSD can ensure that only synonyms in the right sense are added. Cross-

lingual IR  does benefit from explicit WSD to translate and expand the query properly, 

avoiding the noise added by incorrect translations. 

In several experiments to automatically induce a sense inventory from a IR 

collection, a 7-14% improvement in IR precision was observed. The induced 

inventory can pick out the fine-grained ambiguities (such as ball) when they are 

present. Disambiguation errors, because of the mismatch between external sense 

inventory and collection, are reduced. 

Finally, WSD has been applied in several IR-based end-user applications including 

news recommenders and automatic advertisement placement. For example, the 

word ticket in a query could trigger ads about airline tickets, traffic tickets, or theatre 

tickets, depending on its sense in the query. 

HISTORICAL CONTEXT 

This section acknowledges a few of the visionaries, “firsts”, and influential works 

about WSD. It cannot come close to acknowledging all contributors. 

Word sense disambiguation as a distinct computational problem has its roots in the 

first research on machine translation and early researchers well understood the 

significance and difficulty of WSD. Warren Weaver, director of the Natural Sciences 

Division of the Rockefeller Foundation, circulated a now-famous memorandum in 

1949, which already formulated the general methodology to be applied in all future 

work: 
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If one examines the words in a book, one at a time through an opaque mask with a 

hole in it one word wide, then it is obviously impossible to determine, one at a 

time, the meaning of words. “Fast” may mean “rapid”; or it may mean 

“motionless”; and there is no way of telling which. 

But, if one lengthens the slit in the opaque mask, until one can see not only the 

central word in question but also say N words on either side, then, if N is large 

enough one can unambiguously decide the meaning … 

Weaver also recognized the basic statistical character of the problem and proposed 

that statistical semantic studies be undertaken as a first step. 

Abraham Kaplan, in 1950, called ambiguity the “common cold of the pathology of 

language.” His study determined that two words of context on either side of the 

ambiguous word was equivalent to a whole sentence of context in resolving ambiguity. 

The 1950s then saw much work in estimating the degree of ambiguity in texts and 

bilingual dictionaries, and applying simple statistical models (e.g., choosing the most 

frequent sense, or applying a Bayesian formula to determine the probability of a sense 

given the domain. 

In 1959, George Zipf published the “law of meaning” in his book Human 

Behaviour and the Principle of Least Effort (see above). 

By the mid 1960s, MT was in decline because the perceived intractability of 

general MT reached a zenith. Yehoshua Bar-Hillel, in 1960, argued that even the 

relatively simple case of the ambiguity of pen in this now famous example: 

Little John was looking for his toy box. Finally he found it. The box was in the 

pen. John was very happy.  
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could not be resolved by “electronic computer,” because of the need to model, in 

general, all world knowledge. Arguments such as this led to the 1966 ALPAC report 

[see article on MT] which in turn caused the end of most MT research, and WSD 

research along with it.  

In the 1970s, WSD revived within artificial intelligence (AI) research on full 

natural language understanding. Margaret Masterson and Ross Quillian had in the 

early 1960s pioneered the use of semantic networks (of words and senses) and 

spreading activation to solve WSD. Yorick Wilks then developed “preference 

semantics”, one of the first systems to explicitly account for WSD. The system uses 

selectional restrictions and a frame-based lexical semantics to find a consistent set of 

word senses for the words in a sentence. The idea of individual “word experts” 

evolved over this time (Steven Small and Charles Rieger). Word experts encode for 

each word the constraints and procedural rules necessary to disambiguate it, and 

would interact with each other to disambiguate all words in a sentence. In the end, 

such work faced an impractical knowledge acquisition bottleneck because of the 

hand-coding required, but the idea of word experts carried on within the statistical 

paradigm. 

A turning point for WSD occurred in the 1980s, when large-scale lexical resources 

and corpora became available. Hand-coding could be replaced with knowledge 

extracted from the resources. Michael Lesk’s short but seminal work used the overlap 

of word sense definitions in the Oxford Advanced Learner’s Dictionary of Current 

English to resolve word senses. The technique is commonly used as a baseline today. 

Other researchers used LDOCE subject codes (e.g., EC for Economics), which label 

domain-specific senses of words, and Roget’s International Thesaurus. 
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The 1990s saw two main developments: the statistical revolution in NLP swept 

through and Senseval began. Consequently there was an exponential increase in the 

research output on WSD, and it becomes difficult to single out any one researcher. 

Weaver had recognized the statistical nature of the problem. Early corpus-based work 

by Stephen Weiss in 1973 on WSD for IR, and Edward Kelley and Philip Stone in 

1975 on content analysis demonstrated the potential of empirical evidence and 

machine learning approaches, presaging the statistical revolution. Peter Brown and his 

IBM colleagues demonstrated the first use of corpus-based WSD in statistical MT. By 

the mid 1990s a wide variety of supervised and unsupervised machine learning 

techniques had been applied to WSD (David Yarowsky and his colleagues were 

influential), but it remained difficult to compare different results because of disparities 

in words, sense inventories, and corpora chosen for evaluation. 

Senseval, a forum for the common evaluation of WSD, was first discussed in 1997 

(Adam Kilgarriff and Martha Palmer). Senseval has provided a consensus on the 

appropriate tasks and framework for evaluation, three open competition-based 

evaluation exercises, and substantial resources (e.g., sense-annotated corpora) for 

WSD in many languages. 

Statistical corpus-based techniques have now been extensively researched and  

supervised learning algorithms consistently achieve the best performance on explicit 

WSD, given sufficient training data. 

METHODS FOR WSD 

This section covers many of the methods for explicit, standalone, word sense 

disambiguation. Implicit disambiguation usually relies on similar contextual evidence 
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and knowledge sources, but the algorithm is entwined with the other processes of an 

application. The methods are described at a high level of abstraction. Accuracy is 

given in some cases, but direct comparisons are difficult since the conditions of each 

experiment were different (see Evaluation section). 

Computational formulation of the problem 

Explicit word sense disambiguation is a natural classification problem: given a 

word and its possible senses, classify each instance of the word in context into one or 

more of its sense classes. The features of the context provide the evidence for 

classification. WSD is characterized by a having a very high-dimensional feature 

space. That is, the surrounding context of a word has many features that can bear on 

the classification of the word, including features of the surrounding words: 

- Word strings (or root words, or morphological segments), 

- Part-of-speech tags (e.g., “Noun”, “Transitive verb”), 

- Subject/domain codes (e.g., “EC” for Economics in  LDOCE), 

- Sense classes (of disambiguated or partially disambiguated words), 

- Semantic classes and selectional restrictions (e.g., “Person”, “Drinkable”), 

features of the relational structure taken part in by the instance of the word: 

- Syntactic relations (e.g., modification by an adjective), 

- Collocational patterns (i.e., recurrent fixed patterns such as river bank), 

- General co-occurrence relations (e.g., invest anywhere in the local context of 

bank), 

- Semantic relations (e.g., similarity or hypernymy), 

and features of the text as a whole: 
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- Topical features (e.g., words and concepts commonly found in wider contexts), 

- Subject/domain codes or other classification of a text, 

- Genre (e.g., financial news) 

Specific word order or syntactic structure is often crucial (e.g., the word pesticide to 

the immediate left of plant indicates a factory, but in other positions flora). The 

features nearest to the target word typically provide the most predictive power.  

A separate classifier, or word expert, is constructed for each word based on various 

knowledge sources. Hand-construction is one possibility, as in the early AI 

paradigm; automatic acquisition is more common, either from the knowledge in 

lexical databases (including definitions, example sentences, semantic relations, and 

subject codes), or from corpora (sense-annotated or not), or both. 

Some systems perform probabilistic classification, in which a word instance is 

assigned to multiple sense classes with a probability distribution, when they lack 

sufficient evidence for any one sense. This can be effective when combining multiple 

different sense disambiguators, or in applications such as information retrieval where 

the later processing is probabilistic itself. 

Two less common formulations of WSD are as a filter and an inducer. A filter  

removes unlikely senses. For example, a single piece of evidence, say a selectional 

restriction, might immediately rule out a sense. A sense inducer discovers sense 

classes by clustering the contexts of a word’s instances. 

Finally, a note about computational processing required by all methods. Generally, 

the input text (and training corpus) is preprocessed by standard NLP components 

including part-of-speech tagging, stemming, morphological analysis and segmentation, 

and sometimes parsing. Feature vectors are then created in the required formalism. 
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Beyond the basic lexical resources used, the training corpus is sometimes processed to 

build lexical networks and neigborhoods, and bilingual word-alignments. The 

computational complexity of WSD has not yet been a general concern except where it 

makes running hundreds or thousands of experiments infeasible. 

Dictionary-based methods 

In many respects, dictionary-based methods are the easiest to comprehend because 

it is obvious why the work when they work. The Lesk Method, as it has come to be 

known, was the first to use dictionary definitions, the obvious source of knowledge 

about word meanings. It is based on the hypothesis that words used together in text 

are related to each other and that the relation can be observed in the definitions of the 

words and their senses (cf. mutual disambiguation). Thus, the method disambiguates a 

word by comparing its definition to those of the surrounding words. In the case of two 

words, it considers all combinations of the senses of the two words, computing the 

overlap of every pair of definitions. The pair with the largest overlap is selected. For 

example, in pine cone, the senses “seven  kinds of  evergreen tree with needle-shaped 

leaves” of pine and “fruit of certain evergreen trees” of cone have the largest overlap 

(2 words) of all combinations. One implementation achieved 50-70%  accuracy on a 

small test set. This basic method suffers from data sparseness and is sensitive to the 

exact wording of definitions. Simple extensions include additional elements in the 

overlap calculation: example sentences, definitions of words in the sense definitions, 

definitions of related word senses (e.g., by hypernymy in WordNet), and sentences 

from a sense-annotated corpus (69.1% accuracy in the latter case). 
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The Lesk Method is often inefficient for more than a few words since there are too 

many combinations of word senses to consider. (An approximate solution uses 

simulated annealing.) But because of its simplicity it is often used as a baseline to 

assess the performance of other systems. 

The Lesk Method can be generalized to use general word-sense relatedness rather 

than definition overlap. For instance, a hierarchical lexical database such as Roget or 

WordNet can be used to compute the semantic similarity of any two word senses [see 

article]. A very simple method of WSD is then to determine which sense of a target 

word has the greatest similarity to the words in its surrounding context. However, 

reported accuracy is slightly worse than Lesk using WordNet glosses and relations. 

Roget’s International Thesaurus is also a good source of knowledge about 

semantic relationships; the approximately 1,000 heads under which all words are 

categorized can be thought of as semantic classes or word senses. Masterman’s early 

work (see Historical Context) used Roget for target word selection in machine 

translation by examining overlaps in the lists of heads that words fall under. 

A second approach uses Roget (or, actually, any lexical database with semantic 

categories including LDOCE’s subject codes) as a source of word lists for the 

different semantic classes of an ambiguous word. A word-class classifier can then be 

trained on the aggregate context of all the members of each class (see supervised 

methods below). For example, to disambiguate crane, a classifier is built to 

distinguish between the bird and machine classes using the word lists (heron, grebe, 

hawk, …) and (jackhammer, drill, bulldozer, …) and their respective contexts. Even 

though some of the words will add noise through their own polysemy, enough are 
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monosemous to still build an effective classifier. This unsupervised method has 

achieved 92% accuracy on homograph distinctions. 

Selectional restriction-based methods 

A selectional restriction [see article] is a constraint on the semantic type of the 

argument or modifier of the head of a syntactic constituent. For example, to drink gin 

is to drink an alcoholic beverage, not to quaff a card game, since drink selects for an 

object of type liquid. Common in the AI-paradigm of semantic analysis, this method 

can be combined with syntactic analysis to progressively eliminate inappropriate 

senses and so compose a consistent set of semantic templates into a semantic 

representation of a sentence. Selectional restrictions are limited because they can be 

too general or too strict (e.g., my car drinks gasoline violates the restriction that the 

subject be animate). One solution is to view selectional restrictions as preferences 

(Wilks’s “preference semantics”) or as selectional associations. A selectional 

association is a probabilistic distribution over the classes of a concept hierarchy, such 

as WordNet, that can express the likelihood of any class occurring as, say, the object 

of drink (e.g., Prob(BEVERAGE|drink) versus Prob(GAME|drink)). The distribution 

is computed analogously to a word-class classifier by combining corpus statistics of 

occurrences of drink and its many syntactic objects with the semantic classes of the 

objects in the concept hierarchy, such as WordNet. Still, the improved method does 

not perform well enough on its own, and should be treated as a filter. 

Connectionist methods 

Connectionist methods are based on psycholinguistic theories that semantic 

priming [see article] plays a role in disambiguation in humans. In connectionist 



     

30 

disambiguation spreading activation operates over a network of word concept nodes 

and disambiguates all words simultaneously. Successive words in a sentence activate 

nodes in the network, and activation spreads to related concepts and inhibits other 

concepts. For example, drink would activate the beverage sense of gin and inhibit the 

game sense. At the end of a sentence, the concept node with the highest activation for 

each word is output. Early experiments were not conclusive since building the 

networks was problematic, requiring manual intervention. However, lexical networks 

can be built from definition texts of MRDs in a version of the Lesk Method (the 

Collins English Dictionary was used in one experiment that achieved 71.7% 

accuracy.) 

Domain-based methods 

Domain-based methods make explicit use of domain information to filter out 

senses of a word that are inappropriate in the current domain. A basic approach first 

determines the domain of a text by finding the LDOCE subject code or similar (e.g., 

WordNet DOMAINS, a domain-annotated WordNet) that has the maximum 

frequency over all content words. It then selects the sense of a word with the most 

frequent subject code. Improved versions determine the domain more accurately by, 

for example, considering only the words in a window around the ambiguous word, 

and then choosing the sense that maximizes the similarity with a relevant domain in 

the window. 

A different approach builds a domain-specific neighborhood of words, or topic 

signature for each sense of an ambiguous word. In one such method, inspired by the 

Lesk Method, a domain-specific neighborhood of a word contains the words that co-
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occur significantly with the word over all sense definitions labeled by a given 

LDOCE subject code (e.g., word senses labeled with the Economics code that 

significantly co-occur with bank include: account, into, out, money, etc.). To 

disambiguate the word in context, the neighborhood with the greatest overlap with the 

context is chosen. 

The one-sense-per-discourse heuristic has been used in at least two ways. First, if 

one instance of a word can be reliably disambiguated in a given text, then all other 

occurrences of the word can be labeled with that sense. Second, the contexts 

surrounding all instances of a word in a given text can be aggregated as evidence for a 

single sense. 

A completely separate approach to domain-specific disambiguation is domain 

tuning the sense inventory by removing unnecessary senses and words, grouping 

related senses together, and extending it with specialized senses and terms. Domain 

tuning turns WSD on its head to determine which senses in an inventory are relevant 

to a given domain. 

Supervised corpus-based methods 

Supervised machine learning has proven to be the most successful approach to 

WSD, as a result of extensive research since the early 1990s. As a rule, supervised 

learning of WSD derives its model directly and predominantly from sense-annotated 

training examples, whereas unsupervised learning might make use of a priori 

knowledge, but a secondary source. Unsupervised methods are discussed in the next 

section. 

Supervised learning methods all follow the same basic methodology: 
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1. A training collection is created by hand-annotating a sufficient number of 

instances of each target word with their sense classes. Often hundreds of 

examples are required for each word. A subset of the collection is reserved 

for testing. 

2. Each instance of a word and its context is reduced to a feature vector that 

contains features of the sort described above. 

3. For each word type, a training procedure builds a classifier using frequency 

statistics of feature occurrences within each class, gathered from the feature 

vectors. 

4. The set of classifiers is tested on the reserved data, and more iterations are 

performed, modifying the conditions (e.g., selected features, training/test 

split, and algorithm parameters), until a conclusion is reached. 

This methodology generates a set of classifiers capable of classifying new instances, 

represented by their feature vectors. 

Many algorithms for supervised learning [see article] have been applied to WSD 

including: Bayesian networks, boosting, decision lists, decision trees, k-nearest 

neighbor, maximum entropy, Naïve Bayes, memory-based learning, neural networks, 

support vector machines (SVM), transformation-based learning, and vector similarity 

models.  

A binary (two-class) classifier, such as an SVM, can be applied to WSD by 

building a separate binary classifier for each sense of a word, which classifies the 

word as a member or not of the sense class. 

A major result is that choosing the right feature space is more important than 

choosing the right algorithm. For example, eliminating a whole feature type (say 
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collocations) has been shown to degrade performance more than changing the 

algorithm. That said, the currently best performing algorithm for WSD is the SVM, 

because, in theory, SVMs can handle very high-dimensional feature spaces, make no 

assumptions about the independence of features, and allow the easy combination of 

multiple sources of evidence. However, its relative performance over, say, Naïve 

Bayes (which “naively” assumes feature independence), is quite small.  In the 

Senseval-3 English task, SVMs, a modified Naïve Bayes, and ensembles were all in 

the top ten (above 71.8% accuracy) separated by fractional percentages. 

A general distinction can be made between discriminative and aggregative 

algorithms. The former base their classification on a few pieces (sometimes one) of 

evidence in any given context, while the latter accumulate all of the evidence in favor 

of each class. Experiments show that each method has its strengths and weaknesses 

depending on the word, its sense granularity, and sense distribution. A discriminative 

algorithm will be more capable in contexts where a single feature is decisive: often for 

verbs and adjectives, and many homograph-level distinctions. Aggregative algorithms 

perform better when many pieces of weak evidence combine to reach a level of 

confidence: more often in nouns and fine-grained sense distinctions. 

Every learning algorithm has its biases, so combinations, or ensembles, of diverse 

algorithms tend to outperform single algorithms by a modest margin (up to 5%). 

Various combination strategies including voting (by count or confidence), probability 

mixture models, and meta-learning have been explored, voting performing best. 

Many common machine-learning issues arise in WSD, such as feature selection, 

determining the optimum size of the training data, and portability to new domains, but 

one problem that has defined the field over the past decade is the knowledge 
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acquisition bottleneck: training data is difficult and expensive to produce. Senseval 

has alleviated the problem somewhat, by organizing a wide-ranging data annotation 

effort (see Evaluation); however, unsupervised methods have the potential to 

overcome the problem in the long run. 

Unsupervised corpus-based approaches 

The holy grail of WSD is to learn to disambiguate without any training data. In 

their purest form, unsupervised approaches eschew any a priori knowledge of word 

meaning. This section describes two types of unsupervised approach. The first is 

sense induction, to actually discover word senses in a corpus using no a priori 

knowledge of word senses, in effect, acting as an automated lexicographer. (Note that 

the “senses” induced are often called “word uses”, because their character is different 

to the word senses elucidated by lexicographers.) The second disambiguates to an 

existing sense inventory, but requires a secondary source of knowledge such as a 

parallel corpus or small amount of seed data in an approach called bootstrapping. 

Hence, these second approaches are usually considered to be minimally supervised. 

The underlying assumption of sense induction is that similar senses occur in 

similar contexts. Thus, the problem is characterized as clustering by contextual 

similarity rather than as classification. Three methods are described below, which 

each cluster a different representation of context. The first method is to apply a 

clustering algorithm directly to the feature vectors (see above) of the instances of a 

word using a vector similarity function such as cosine similarity. Data sparseness is 

often a problem in smaller corpora and for the rarer senses of a word, but can be 

somewhat alleviated through dimensionality reduction. Nevertheless, rarer senses 
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(e.g., smaller clusters) must still be removed from the model. Since senses are not 

labeled, merely discriminated one from another, direct comparisons to other methods 

of WSD are impossible. Applied to information retrieval, one experiment using a 

model called Context Group Discrimination yielded a 14.4% improvement in retrieval 

precision. 

The second method clusters the list of nearest neighbors of a target word, that is, 

the list of words that are semantically similar to the target word. Contextual word 

similarity [see article], the degree to which two words occur in similar contexts, can 

be computed from the feature vectors.  For example, plant has the neighbors  factory, 

facility, refinery, shrub, perennial, and bulb. Clustering these words by their semantic 

similarity results in two clusters: (factory, facility, refinery) and (shrub, perennial, 

bulb), which represent two senses of plant. No results are available for its application 

to WSD. 

The third method is also based on word similarity. It first builds a graph (i.e., 

network) of words linked by relations of semantic similarity and/or co-occurrence. 

The local graph surrounding a target word is then clustered using a graph-clustering 

algorithm. The intuition is that the senses of the target word will correspond to loosely 

connected components of the local graph (i.e., the words in each component will be 

related to each other more than they are to the words in another component). No 

results are available for its application to WSD. 

A word-aligned parallel corpus can be used in minimally supervised WSD. It has 

been observed that an ambiguous word in a source language is often translated into 

different words in a target language depending on the sense of the word. The words in 

the target language may themselves be ambiguous, either sharing two or more senses 
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with the source word or have other senses. However, the fact that multiple different 

source words will translate to the same target word can be used in WSD. For example, 

the three English words: disaster, tragedy, and situation all translate to catastrophe in 

a English-French parallel corpus. Even though the three English words are ambiguous, 

a single sense for them (“a calamity”) can be determined using a variant of the Lesk 

Method. An implementation of this method achieved 53.3% accuracy using an 

English-French machine translated corpus (the second highest unsupervised score on 

Senseval-2 data). 

The bootstrapping approach starts from a small amount of seed data for each 

word: either hand-labeled training examples, or a small number of surefire decision 

rules (e.g., play in the surrounding context of bass almost always indicates the 

musical instrument). The seeds are used to train an initial classifier, using any 

supervised method. This classifier is then used on the untagged portion of the corpus 

to extract a larger training set, in which only the most confident classifications are 

included. The process repeats, each new classifier being trained on a successively 

larger training corpus, until the whole corpus is consumed. Seed decision rules can be 

extracted from dictionaries, lexical databases, or from automatically extracted 

collocations. One system, using the latter approach, achieved 96.5% accuracy on a 

few homographs. A further variant combines both a bilingual corpus (not necessarily 

word-aligned or parallel) with bootstrapping: in each step, classifiers are trained for 

both languages simultaneously using previously classified data from both languages. 

Experiments achieve a 3-8% improvement over monolingual bootstrapping on the 

same data. 
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Finally, an unsupervised technique for determining the most frequent sense of a 

word in a corpus has recently been developed. It is closely related to the second 

clustering method above. If one considers the list of nearest neighbors of a target 

word, then, following from the generalized Lesk Method, a majority of its neighbors 

will be most similar to one of its senses, the most frequent sense. While this method 

cannot disambiguate a word, it can be used as a back-off strategy, when another 

method is not sufficiently confident. Alternatively, if one-sense-per-discourse holds 

for a given target word, then WSD is replaced by domain identification [see article]. 

EVALUATION 

To progress as a science, word sense disambiguation needs to be evaluated on a 

common playing field, which has proven to be serious challenge. Evaluating WSD is 

difficult because of the different goals involved in the research and application of 

WSD algorithms. To illustrate, just about every system in the previous section was 

evaluated on different words, sense inventories (crucially, of different sense 

granularities), and types of corpus and application, rendering direct comparison 

meaningless. Furthermore, a large reference corpus is required, with enough hand-

annotated examples of each word to cover all of its senses in a representative mixture 

of contexts. Sense-annotation by hand is labor-intensive, is difficult to do reliably, and 

is unlikely to carry over to another application. As a result most systems had been 

evaluated on only a few words, and often only at the homograph level. However, over 

the past decade, Senseval has a established a common framework for the evaluation of 

explicit and generic WSD algorithms. And, in a reversal, the task of explicit WSD is 

now defined by the evaluation, rather than the evaluation by the task. 
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Accuracy against a reference corpus 

WSD can be evaluated in vitro, independent of any particular application, or in 

vivo, in terms of its contribution to an application such as information retrieval. In 

vitro evaluation, by far the most common method, allows for the detailed analysis of 

explicit WSD algorithms over a range of conditions, whereas in vivo evaluation 

provides an arguably more realistic assessment of ultimate utility of WSD and is the 

only way to evaluate implicit WSD. The rest of this section focuses on in vitro 

evaluation; evaluation in IR and other applications was discussed already. 

The basic metric for evaluation is simple accuracy: percentage of correct taggings 

taken over all instances of all words to be tagged in a reference corpus. Creating a 

reference corpus is a process of manual annotation. The accepted practice is to use 

at least two trained annotators with a final arbitrator to resolve disagreements possibly 

through discussion. Because annotation often uncovers inconsistencies or other 

problems in a sense inventory (such as missing or unclear senses), annotators can 

provide feedback to lexicographers. For reasons of objectivity and consistency, 

trained lexicographers should be used, but this view is challenged by the Open Mind 

Word Expert project, a large-scale Web-based annotation effort.   

Two types of reference corpus are available: sampled and running. The former 

annotates a sample of words and often provides only a short surrounding context for 

each instance. The latter annotates all words in running text. Table 3 lists the main 

reference corpora for English (Senseval has also provided many corpora in other 

languages). 

<Table 3 near here> 
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The relative performance of a system is generally assessed against the baseline of 

selecting the most frequent sense, information readily available from many 

dictionaries (often, the first sense listed), or from the manually-annotated reference 

corpus, or indeed from the unsupervised method discussed above. The Lesk Method 

has also been used as a baseline. 

An upper bound on WSD is more difficult to come by: perfect disambiguation 

cannot even be expected from a person, given the nature of word meaning and context. 

Thus, the natural upper bound is inter-annotator agreement, the percentage of cases 

where two or more annotators agree, before arbitration.  Inter-annotator agreement 

also serves as an indication of the difficulty and integrity of the task. A low upper 

bound would imply that the task is ill-defined and that WSD is without foundation. 

One early study reported the dangerously low value of 68%, and the Senseval-3 

English lexical sample task had an equally low value. However, inter-annotator 

agreement is a misleading upper bound on WSD, since an arbitrator provides a third 

voice. Replicability  is arguably a more sensible upper bound. Replicability is the 

level of agreement between two replications of the same annotation exercise, 

including arbitrators. A respectable 95% has been reported, however, replicability has 

not been used in practice because it doubles the annotation workload. 

Evaluation is not so simple as this. If a system can abstain from tagging a target 

word instance or give multiple answers, accuracy must be broken into precision (the 

percentage of system answers that are correct) and recall (the percentage of all test 

instances that a system answers correctly). An additional scheme reports fine-grained 

and coarse-grained scores, the latter grouping all subsumed fine-grained senses into a 

single coarse-grained sense, so that choosing any of the senses is considered correct. 
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This scheme is possible using a hierarchical inventory, where the coarse-grained level 

might represent homographs or other groups of related senses. A final scheme 

provides partial credit for tagging with a similar albeit incorrect sense of a target word. 

One problem with averaging over all instances (and all senses) is that performance 

on particular words and word senses cannot be observed. Since the distribution of 

senses is so skewed, these metrics could cover up the actual performance of an 

algorithm that is only accurate on the most frequent senses, completely failing on the 

rarer senses. 

Senseval 

Senseval has established through three open evaluation exercises, a framework for 

the evaluation of WSD that includes standardized task descriptions and evaluation 

methodology. It represents a significant advance in the field because it has focused 

research, produced benchmarks, and generated substantial resources in many 

languages. 

Senseval defines two main tasks. The lexical sample task is to tag a small sample 

of word types. The sample is a stratified random sample that varies on part of speech, 

number of senses, and frequency. Corpus instances covering as many of each word’s 

senses as possible are selected and manually annotated to created a sampled reference 

corpus. The all-words task is to tag all instances of ambiguous words in running text. 

Here, the issue is to select complete texts with a sufficient variance in terminology 

and average polysemy. The all-words task is a more natural disambiguation task since 

the whole text is provided as evidence for disambiguation, and could lead ultimately 

to a generic component for WSD. However, the lexical sample task is arguably better 
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science: it allows one to analyse a wider range of phenomena, and to focus on 

problematic words or words that will have a significant impact on an application. 

Other ways to evaluate 

When there is no reference corpus to either train from or test on, pseudo-words 

provide an alternative. To create a pseudo-word, treat all the instances of two or more 

randomly selected words as the same word. The artificially-ambiguous word has as its 

“senses” the original words. WSD then proceeds normally. Accuracy is given in terms 

of correct replacements of the original words. Pseudo-words seem attractive, but they 

have been criticized because 1) they do not necessarily have natural skewed word-

sense distributions, and 2) they do not have senses related to each other the way that a 

polysemous word’s senses relate. Thus, it is questionable what one can learn about 

context and word meaning through pseudo-words. 

Unsupervised sense induction cannot be easily evaluated against a reference corpus. 

In vivo evaluation is one option. A second is to manually map the clusters to word 

senses, which is subjective. If the clusters are labeled, as in the nearest neighbor 

approach, then automated alignment is possible; however, the alignments are unlikely 

to be perfect because of disparities between word uses and word senses. If a parallel 

corpus is used, then one method is to create the parallel corpus by machine translation 

of a reference corpus; however, this method could have problems because the MT 

system could easily make the same errors in target word selection that an explicit 

WSD algorithm would make. 
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CURRENT RESEARCH EFFORTS 

Explicit word sense disambiguation to a fixed sense inventory (as a constrained 

case of general lexical disambiguation) is a robust task. The three evaluation exercises 

run by Senseval show that over a variety of word types, frequencies, and sense 

distributions, systems are achieving consistent and respectable accuracy levels that are 

approaching human performance on the task. The main variation in accuracy is due to 

the sense inventory not meeting the three Cs (consistency, clarity, and coverage). 

Disambiguating to the homograph level is essentially solved, if greater than 90% 

accuracy is enough for the application. At finer-levels, support vector machines are 

the current best method, followed closely by naïve Bayes (both supervised corpus-

based methods), achieving accuracy of 73%. 

However, effective application-specific WSD is still an open problem. 

Current research efforts are focused on: 

• Error analysis to determine the factors that affect WSD and the specific 

algorithms: What makes some words and senses easier to disambiguate than 

others? 

• Unsupervised approaches to overcoming the data acquisition bottleneck, 

especially through bootstrapping and machine learning techniques such as co-

training. 

• Exploring the sense distributions of individual words, and especially focusing 

on the rarer senses that are currently difficult for WSD. 

• Developing better sense inventories and sense hierarchies. 

• Establishing an evaluation framework for application-specific WSD (within 

Senseval). 
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• Domain-specific issues, such as domain tuning and domain identification. 

• Treating named entities and reference as a WSD problem. When do two 

occurrences of the same name refer to the same individual. 
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Figure 1. Skew of the distribution of words by number of senses.a 
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a BNC words are plotted on the horizontal axis in rank order by frequency in the 

BNC. Number of WordNet senses per word is plotted on the vertical axis. Each point 

represents a bin of 100 words and the average number of senses of words in the bin. 

. 
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Figure 2. Skew in the distribution of the senses of words.b 
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b The chart plots the distributions for 12 word classes in Semcor ranging from 1-

sense words to 12-sense words. In each class (each column), the senses are ordered by 

frequency, normalized per word, and averaged over all words in the class. 

 



     

49 

Table 1. Examples of lexical ambiguity. Senses from Princeton WordNet 2.0. 

Word Number of senses Examples 

call 28 verb senses, 

13 noun senses 

“to assign a name to”, “to get into 

communication by telephone”, “to utter a sudden 

loud cry”, “to lure by imitating the characteristic 

call of an animal”, “order, request, or command 

to come”, “order or request or give a command 

for” 

 

bank 8 verb senses, 

10 noun senses 

 

“financial institution”, “sloping land” 

crab 4 verb senses, 

7 noun senses 

“to direct an aircraft into a crosswind”, “to 

scurry sideways like a crab”, “to fish for crab”, 

and “to complain” 

 

quoin 3 noun senses “expandable metal or wooden wedge used by 

printers to lock up a form within a chase”, “the 

keystone of an arch”, “solid exterior angle of a 

building; especially one formed by a 

cornerstone” 
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Table 2: Average polysemy of WordNet 2.0 and LDOCE and the BNC. 

Resource 
 

WordNet 2.0 LDOCE 

Number of words 
 

125,784 35,958 

Number of ambiguous words 
 

26,275 14,147 

Number of senses 
 

77,739 76,060 

Average polysemy (all words) 
 

0.618 2.12 

Average polysemy (ambiguous words) 
 

2.96 3.83 

Average polysemy of BNC (all words) 
 

7.23 8.87 

Average polysemy of BNC (ambiguous 
 
words) 
 

8.04 10.02 
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Table 3. Manually-annotated reference corpora in English.c 

Corpus Number of words 

types 

Size (tagged 

instances) 

Sense inventory 

line, hard, serve 3 12,000 WordNet 1.5 

Interest 1 2,369 LDOCE 

HECTOR 300 200,000 HECTOR 

Semcor 23,346 234,113 WordNet 1.6 

DSO Corpus 191 192,800 WordNet 1.5 

Senseval-1 41 8,448 WordNet 1.6 

Senseval-2 sample 73 12,939 WordNet 1.7.1 

Senseval-2 running 1,082 2,473 WordNet 1.7.1 

Senseval-3 sample 59 11,804 WordNet 1.7.1 

Senseval-3 running 960 2,041 WordNet 1.7.1 

Open Mind Word Expert 

1.0 / 2.0 

288 / 60 29,430 / 21,378 WordNet 1.7.1 

c Compiled from Edmonds and Kilgarriff (2002), Senseval workshop proceedings, and 

personal contacts. 

 


